
1

The Postfix mail server as a
secure programming example

Wietse Venema
IBM T.J. Watson Research Center

Hawthorne, USA

Expectations before the first
Postfix release...
[Postfix]: No experience yet, but I’d guess

something like a wisened old man sitting on the
porch outside the postoffice. Looks at everyone
who passes by with deep suspicion, but turns out
to be friendly and helpful once he realises you’re
not there to rob the place.

Article in alt.sysadmin.recovery

2

Overview

Why write yet another UNIX mail system?

Postfix architecture and implementation.

Catching up on Sendmail, or how Postfix could
grow 4x in size without becoming a bloated
mess.

The future of Postfix and other software as we
know it.

New code, new bug opportunities

Code line counts for contemporary software:

Windows/XP: 40 million; Vista 50+ million.

Debian 2.2: 56 million; 3.1: 200+ million.

Wietse’s pre-Postfix average: 1 bug / 1000 lines1.

Postfix public release: 30k lines of opportunity1,2.

1Not included: comment lines, or bugs found in development.
2Today: 95k lines of code.

3

CERT/CC UNIX mail advisories
(it’s not just about Sendmail)

Bulletin Software Impact
CA-1988-01 Sendmail 5.58 run any command
CA-1990-01 SUN Sendmail unknown
CA-1991-01 SUN /bin/mail root shell
CA-1991-13 Ultrix /bin/mail root shell
CA-1993-15 SUN Sendmail write any file
CA-1993-16 Sendmail 8.6.3 run any command
CA-1994-12 Sendmail 8.6.7 root shell, r/w any file
CA-1995-02 /bin/mail write any file

CERT/CC UNIX mail advisories

Bulletin Software Impact
CA-1995-05 Sendmail 8.6.9 any command, any file
CA-1995-08 Sendmail V5 any command, any file
CA-1995-11 SUN Sendmail root shell
CA-1996-04 Sendmail 8.7.3 root shell
CA-1996-20 Sendmail 8.7.5 root shell, default uid
CA-1996-24 Sendmail 8.8.2 root shell
CA-1996-25 Sendmail 8.8.3 group id
CA-1997-05 Sendmail 8.8.4 root shell

4

CERT/CC UNIX mail advisories

Bulletin Software Impact
CA-2003-07 Sendmail 8.12.7 remote root privilege
CA-2003-12 Sendmail 8.12.8 remote root privilege
CA-2003-25 Sendmail 8.12.9 remote root privilege

Traditional UNIX mail delivery
architecture

mailbox file

Sendmail*

/bin/mail*

to networkfrom network

local submission

local delivery * uses root privileges

to |command**

to /file/name**

** in ~/.forward files
and in /etc/aliasesowned by recipient

5

Root privileges in UNIX mail
delivery

Mailbox files are owned by individual users.

Therefore, /bin/mail needs root privileges so that
it can create / update user-owned mailbox files1.

“|command” and /file/name destinations in
aliases and in user-owned ~/.forward files.

Therefore, sendmail needs root privileges so that
it can correctly impersonate recipients.

1Assuming that changing file ownership is a privileged operation.

Postfix primary goals
(It’s not only about security)

Compatibility: make transition easy.
Wide deployment by giving it away.
Performance: faster than the competition.
Security: no root shells for random strangers.
Flexibility: C is not an acceptable scripting
language.
Reliability: behave rationally under stress.
Easy to configure: simple things should be easy.

6

Challenges: complexity
(How many balls can one juggle without messing up)

Multi-protocol: SMTP, DNS, LDAP, SQL, Milter.
Broken implementations: clients, servers, proxies.
Concurrent mailbox “database” access.
Complex mail address syntax <@x,@y:a%b@c>.
Queue management (thundering herd).
SPAM and Virus control.

And as we have learned, complexity and security
do not go together well.

Remote client

Mail queue

Local sender
Local recipient

mailbox /file/name
“|command”

Remote server

Each arrow represents a privilege domain transition

UNIX mail systems cross (too)
many privilege domains

untrusted untrusted

untrusted impersonated

owned by mail system

7

Remote client

Local sender
Local recipient

mailbox /file/name
“|command”

Remote server

Dangers of monolithic privileged
MTAs: no damage control

untrusted untrusted

untrusted impersonated

Monolithic mail system
(with root privilege)

Dangers of monolithic privileged
MTAs: no damage control

One program touches all privilege domains.

– Make one mistake and a remote client can
execute any command, or can read and write
any file - with root privilege.

No internal barriers:

– Very convenient to implement.

– Very convenient to break into.

8

Postfix service-based architecture
(not shown: local submission, lmtp and qmqp protocols)

smtpd

local
pickup

smtpdinternet
smtp

server

other
programs

smtpd
smtpd

local
delivery

smtpdsmtpd
smtp
client

internet

mailbox
|command
/file/name

queue
directories

privileged

smtpdsmtpd
to external
transports

uucp
fax
pager

privileged

unprivileged

unprivileged

unprivileged

unprivileged

smtp
client

(local submission)

= root privilege
= postfix privilege

Main Postfix security guiding
principles

Compartmentalize. Use one separate program per
privilege domain boundary1.
Minimize privilege. Use system privilege only in
programs that need to impersonate users. Many
unprivileged daemons can run inside a chroot() jail.

Do not trust queue files and IPC messages for
security sensitive decisions (like: impersonation of
recipients).

1Hidden privilege domain boundaries may result from interactions
with DNS, LDAP, MySQL, PostgreSQL, NIS, NETINFO, etc.

9

Low-level example - avoiding
buffer overflow vulnerabilities

80-Column punch cards went out of fashion years ago.

Fixed-size buffers often have the wrong size: they are
either too small, or too large.

“specially-crafted” input overwrites function call return
address, function pointer, or other critical information.

Dynamic buffers are only part of the solution, because
they introduce new problems of their own.

Memory exhaustion attacks

IBM web server: never-ending request.
forever { send “XXXXXX...” }

qmail 1.03 on contemporary platforms.

– Never-ending request:
forever { send “XXXXXX....” }

– Never-ending recipient list:
forever { send “RCPT TO <address>\r\n” }

Impact: exhaust all virtual memory on the system;
possibly crash other processes.

10

Dynamic buffers with safety nets

Upper bounds on the sizes of object instances.

– With SMTP, 2048-character input lines are sufficient.
Basically, Postfix uses larger punch cards.

Upper bounds on the number of object instances.

Plus some special handling for large items.

– Limit the total length of multi-line message header lines (To:,
Received: etc.).

– Don’t limit the length of message body lines; process them
as chunks of 2048 characters, one at a time.

Catching up on Sendmail

How Postfix has grown in size, from a qmail1-like
subset to a complete mail server.

Where did all that code go?

Why Postfix could grow 4x in size without
becoming a bloated mess.

Why writing Postfix code is like pregnancy.

1A direct competitor at the time of first release.

11

How Postfix has grown in size

Initial trigger: the Postfix 2.2 source tar/zip file
was larger than the Sendmail 8.13 tar/zip file.

Analyze eight years of Sendmail, Postfix, and
qmail source code:
– Strip comments (reducing Postfix by 45% :-).
– Format into the “Kernighan and Ritchie C”

coding style (expanding qmail by 25% :-).
– Delete repeating (mostly empty) lines.

MTA Source lines versus time

12

Where did all that code go?
(Lies, damned lies, and statistics)

4x Growth in size, 8400 lines a year, 23 lines each
calendar day, most but not all by the same person.
Small increase:
– 1.3x Average program size (800 to 1100 lines).

Large increase:
– 4x Library code (from 13000 to 52000 lines).
– 2.5x Command/daemon count (from 15 to 36).

No increase: number of system privileged
programs.

Postfix RFC lines versus time

13

Why Postfix could grow 4x and
not become a bloated mess

Typically a major Postfix feature is implemented
by a new server process and a small amount of
client code. Recent examples:
– flush(8) controls on demand delivery.
– tlsmgr(8) controls the TLS(SSL) session key cache.
– verify(8) controls email address verification probes.
– anvil(8) controls inbound connection/rate limits.
– scache(8) controls outbound connection cache.

This is not a coincidence. It is a benefit of the
Postfix architecture.

Postfix service-based architecture

smtpd

local
pickup

smtpdinternet
smtp

server

other
programs

smtpd
smtpd

local
delivery

smtpdsmtpd
smtp
client

internet

mailbox
|command
/file/name

queue
directories

privileged

smtpdsmtpd
to external
transports

uucp
fax
pager

privileged

unprivileged

unprivileged

unprivileged

unprivileged

smtp
client

(local submission)

= root privilege
= postfix privilege

14

Good news: the Postfix security
architecture preserves integrity

Normally, adding code to an already complex
system makes it even more complex.

– New code has unexpected interactions with already
existing code, thus reducing over-all system integrity.

The Postfix architecture encourages separation
of functions into different, untrusting, processes.

– Implementing each new major Postfix feature with a
separate program minimizes interactions with already
existing code, thus preserving over-all system integrity.

Bad news: writing major Postfix
feature is like pregnancy

Size: the result can have only a limited size.
– With Postfix, a typical major feature takes about

1000 lines of code, which is close to the average
size of a command or daemon program.

Time: throwing more people at the problem will
not get you a faster result.
– The typical time to complete a major feature is

limited to 1-2 months. If it takes longer it gets
snowed under by later developments. Postfix
evolves in Internet time.

15

Conclusions and Resources

Lessons learned: UNIX/C

Neither UNIX nor C were designed with security as
a major goal. Implementing “secure” software in
such an environment is an exercise in:
– Eliminating the many unsafe mechanisms.
– Hardening the few remaining mechanisms.

Regardless of environment, UNIX, Win32, JAVA:
– Be liberal with sanity checks and safety nets.
– Be prepared for the unexpected. Never assume.

16

Future of software as we know it

It is becoming less and less likely that someone will
write another full-featured Postfix or Sendmail MTA
from scratch (100 kloc).
It is becoming even less likely that someone will write
another full-featured BSD or LINUX kernel from
scratch (2-4 Mloc).
..or a full-featured web browser (Firefox: 2 Mloc),
..or another window system (X Windows: 2 Mloc).
..or a desktop suite (OpenOffice: 5 Mloc), etc.
Creationism versus evolutionism.

Postfix Pointers

The Postfix website at http://www.postfix.org/
Richard Blum, Postfix (2001).
Kyle Dent, Postfix The Definitive Guide (2003).
Peer Heinlein, Das Postfix Buch, 2nd ed (2004).
Ralf Hildebrandt, Patrick Koetter, The Book of
Postfix (2005).
Books in Japanese, Chinese, other languages.

1

Secure Programming Traps and
Pitfalls – The Broken File Shredder

Wietse Venema
IBM T.J.Watson Research Center

Hawthorne, USA

Overview

What happens when a (UNIX) file is deleted.

Magnetic disks remember overwritten data.

How the file shredding program works.

How the file shredding program failed to work.

“Fixing” the file shredding program.

Limitations of file shredding software.

2

UNIX file system architecture

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s
type=file/dir/etc

access perms

reference count

owner/group ID

data block

data block

data block

Data blocks
time stamps

file size

filename inode

Deleting a (UNIX) file destroys
structure not content

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s
type=file/dir/etc

access perms

reference count1

owner/group ID

data block

data block

data block

Data blocks
time stamps2

2status change time = time of deletion
file size 1zero references

foo
filename inode

3

Persistence of deleted data

Deleted file attributes and content persist in
unallocated disk blocks.

Overwritten data persists as tiny modulations on
newer data.

Information is digital, but storage is analog.

Peter Gutmann’s papers: http://www.cryptoapps.com/~peter/usenix01.pdf
and http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
kool magnetic surface scan pix at http://www.veeco.com/

4

Avoiding data recovery from
magnetic media

Erase sensitive data before deleting it.

To erase, repeatedly reverse the direction of
magnetization. Simplistically, write 1, then 0, etc.

Data on magnetic disks is encoded to get higher
capacity and reliability (MFM, RLL, PRML, ...).
Optimal overwrite patterns depend on encoding.

mfm = modified frequency modulation; rll = run length limited;
prml = partial response maximum likelihood

File shredder pseudo code

/* Generic overwriting patterns. */
patterns = (10101010, 01010101,

11001100, 00110011,
11110000, 00001111,
00000000, 11111111, random)

for each pattern
overwrite file with pattern

remove file

5

File shredder code,
paraphrased

long overwrite(char *filename)
{

FILE *fp;
long count, file_size = filesize(filename);

if ((fp = fopen(filename, “w”)) == NULL)
/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)
fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

return (count);
}

What can go wrong?

The program fails to overwrite the target file
content multiple times.

The program fails to overwrite the target at all.

The program overwrites something other than the
target file content.

Guess what :-).

6

Forensic tools to access
(deleted) file information

application

operating
system

hardware

regular
application

vfs
ffs, ext3fs, etc.
device driver

disk blocks

forensic
application

Coroner’s Toolkit discovery
(Note: details are specific to RedHat 6 Ext2fs)

[root test]# ls -il shred.me list the file with its file number
1298547 -rw-rw-r-- 1 jharlan jharlan 17 Oct 10 08:25 shred.me
[root test]# icat /dev/hda5 1298547 access the file by file number
shred this puppy
[root test]# shred shred.me overwrite and delete the file
Are you sure you want to delete shred.me? y
1000 bytes have been overwritten.
The file shred.me has been destroyed!
[root test]# icat /dev/hda5 1298547 access deleted file by number
shred this puppy the data is still there!
[root test]#

See: http://www.securityfocus.com/archive/1/138706 and follow-ups.

7

Delayed file system writes

shred application

operating system
VM/file cache

disk drive

...but no file I/O here

lots of file I/O here...

File shredder problem #1
Failure to overwrite repeatedly

Because of delayed writes, the shred program
repeatedly overwrites the in-memory copy of the
file, instead of the on-disk copy.

for each pattern
overwrite file

8

File shredder problem #2
Failure to overwrite even once

Because of delayed writes, the file system
discards the in-memory updates when the file is
deleted.

The on-disk copy is never even updated!

for each pattern
overwrite file

remove file

File shredder problem #3
Overwriting the wrong data

The program may overwrite the wrong data
blocks. fopen(path,”w”) truncates the file to
zero length, and the file system may allocate
different blocks for the new data.

if ((fp = fopen(filename, “w”)) == NULL)
/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)
fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

9

“Fixing” the file shredder program

if ((fp = fopen(filename, “r+”)) == NULL) open for update
/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)
fwrite(buffer, BUFFER_SIZE, 1, fp);

if (fflush(fp) != 0) application buffer => kernel
/* error... */

if (fsync(fileno(fp)) != 0) kernel buffer => disk
/* error... */

if (fclose(fp) != 0) and only then close the file
/* error... */

Limitations of file shredding

Write caches in disk drives and/or disk controllers
may ignore all but the last overwrite operation.

Non-magnetic disks (flash, NVRAM) try to avoid
overwriting the same bits repeatedly and instead
create multiple copies of data.

Not shredded: temporary copies from text
editors, printer spoolers, mail clients; swap files.

But wait, there is more...

10

Limitations of file shredding

The file system may relocate a file block when it
is updated, to reduce file fragmentation.

Journaling file systems may create additional
temporary copies of data (Ext3fs: journal=data).

Copy-on-write file systems (like Solaris ZFS)
never overwrite a disk block that is “in use”.

None of these problems exist with file systems
that encrypt each file with its own encryption key.

Lessons learned

An untold number of problems can hide in code
that appears to be perfectly reasonable.

Don’t assume, verify.
– Optimizations in operating systems and in

hardware invalidate the program completely.
– Examine raw disk blocks (network packets, etc.)

Are we solving the right problem? Zero filling free
disk space (and all swap!) may be more effective.

