
Chapter 4

Postfix ARCHITECTURE

Postfix has gained popularity as an MTA because of it has the same interface like sendmail , yet

it does not have problems with security and reliability. The architecture of Postfix closely follows

the design principles of qmail. A lot of security patterns of the qmail architecture are found in

Postfix. Additionally, Postfix improves performance. It shows better performance than qmail and

sendmail in benchmark tests [2] [3] [27]. In many cases Postfix uses the same security patterns

like qmail. However, there are design areas where Postfix uses different patterns and these design

choices are motivated by performance. Along with that, there are mechanisms adopted at different

places in Postfix architecture to improve performance. Thus the Postfix architecture provides a

good example of consideration of performance along with security and reliability.

4.1 History of Postfix

The primary goal of Postfix is security and performance. Another key goal is sendmail compat-

ibility. Postfix acts as a direct and seamless replacement for sendmail with the users remaining

transparent of the change.

Postfix was written by Wietse Zweitze Venema to provide an alternative MTA for standard

Unix servers. Wietse Venema was in a sabbatical in IBM T. J. Watson Research center when he

started the project of developing a secure and faster alternative of sendmail. Testing on Alpha

version began in January 1998 and the beta release came out for public use in December that year.

Initially the MTA was named VMailer. Charles Palmer was the leader of the project and the

main IBM contact. He proposed the name Postfix which was adopted eventually.

35



Although Postfix was intended to replace sendmail, another target was to get a faster version

of qmail, yet retaining the security that qmail is famous for. Thus, the interfaces of Postfix is

more similar to sendmail than qmail ’s interface, but architecturally it is closer to qmail, because

of the adoption of security patterns and principles used by qmail author Daniel Bernstein.

4.2 Postfix Architecture

Postfix is based on semi-resident, mutually-cooperating processes that perform specific tasks for

each other, without any particular parent-child relationship. This gives better insulation than using

one big program. In addition, the Postfix approach has the advantage that a service such as address

rewriting is available to every Postfix component program, without incurring the cost of process

creation just to rewrite one address.

Postfix is implemented as a resident master server that runs Postfix daemon processes on de-

mand. These processes are created up to a configurable number, are re-used for a configurable

number of times, and go away after a configurable amount of idle time. This approach reduces

process creation overhead while still providing good insulation.

The Postfix architecture is based on programs, queues and lookup tables for configuration

management. The core Postfix program is master, that runs in the background all the time. This

spawns processes on demand to scan and process the queues. Instead of having one mail queue like

qmail, Postfix has 5 different mail queues. Another interesting aspect of its architecture is the use

of lookup tables for describing policies.

The architecture follows the structure of the generic MTA presented in chapter 1. The following

three sections describe the processes, queues and tables in Postfix.

4.2.1 Postfix Processes

The default installation of Postfix has three daemon processes running - master, qmgr and

pickup. The pickup program determines when messages are available for routing by scanning the

maildrop queue. The central message routing for Postfix is handled by the qmgr program.

Email messages from remote hosts are received via SMTP by the smtpd process. smtpd hands

the messages to cleanup. The cleanup process does the same tasks as qmail-smtpd. qmail-

36



smtpd delivers the message to qmail-queue to put in the queue. Postfix’s smtpd process delivers

messages to cleanup daemon. If not run from server (in stand-alone mode) smtpd deposits

messages directly into the maildrop queue.

Figure 4.1: Postfix Architecture

For local delivery, Postfix has a program called sendmail that doubles as the original sendmail

program to forward messages from local users to the mail queue (qmail-inject in qmail). However,

instead of sending the message to cleanup, it writes in the world-writable maildrop queue.

qmail-smtpd handles messages to qmail-queue for writing in the queue. In Postfix the process

that writes into queue is cleanup. However, unlike qmail-queue , cleanup processes the incoming

mail headers and formats them with the help of trivial-rewrite and places them in the incoming

queue. The input of the cleanup process comes from the maildrop queue via the pickup

37



program (local messages) or directly from the smtpd process (remote messages). The cleanup

program checks the RFC 822 header fields to ensure that they conform to a specific format. For

that, it inserts missing From:, Message-ID: and Date: fields and extracts and rewrites addresses of

recipients in the To:, Cc: and Bcc: fields. For address re-writing it uses definitions in the canonical

and virtual tables.

The qmgr daemon (similar to qmail-send) awaits the arrival of incoming mail and arranges

for its delivery via Postfix delivery processes. Address rewriting and related tasks are done in this

phase in qmail. However, in Postfix, the address-rewriting mechanism are re-factored and moved

to the trivial-rewrite program. This makes qmgr simpler and smaller than qmail-send.

Postfix has separate processes for sending mails using different protocols. This is different from

qmail architecture that has qmail-local doing local delivery and qmail-remote doing all types of

remote delivery using different protocols. This complicates the architecture and incorporation of a

new protocol is significantly difficult. When considering protocol extensibility, Postfix architecture

is much scalable than qmail.

The message delivery requests from the qmgr process are handled by the SMTP client, i.e.,

the smtp process. Each request specifies a queue file, a sender address, a domain or host to deliver

to, and recipient information. smtp runs from the master process manager. It looks up a list of

mail exchanger addresses for the destination host, sorts the list by preference, and connects to each

listed address until it finds a server that responds. When a server is not reachable, or when mail

delivery fails due to a recoverable error condition, the SMTP client will try to deliver the mail to

an alternate host.

Local delivery is handled by the local process. Mails delivered in standard sendmail “mailbox”

or “mbox” format mailboxes or qmail style “maildir” mailboxes. This process is operationally

similar to qmail-local.

The pipe process forwards messages from qmgr to some external program (UUCP, etc).

4.2.2 Postfix Queues

Postfix uses several different queues for message storage and management at different points of

delivery.

38



The maildrop queue stores messages that have been submitted via the sendmail command

of Postfix. This queue is drained by the pickup process. The formatted messages end up in the

incoming queue.

Another important queue is the active queue. This is somewhat analogous to an operating

system’s process run queue. Messages in the active queue are ready to be sent (runnable), but

are not necessarily in the process of being sent (running). qmgr is a delivery agent scheduler; it

works to ensure fast and fair delivery of mail to all destinations within designated resource limits.

active queue is not maintained physically in the disk unlike other queues. It is maintained as a

data structure in the address space of qmgr. The reliability issue comes to the forefront in this

case. However, the mail delivery process is implemented as a state machine and the data is safely

resident in physical drive for the states. So, the system can restart gracefully from a crash.

When all the deliverable recipients for a message are delivered, and for some recipients delivery

failed temporarily for a transient reason, the message is placed in the deferred queue. qmgr

scans the queue periodically. The scan interval is controlled by the queue run delay parameter.

The queue manager alternates between bringing a new message from the incoming and the

deferred queue for delivery and therefore there is no starvation.

Recent versions of Postfix have the flush message queue to improve performance during SMTP

ETRN delivery. ETRN is an extension of SMTP that enables aa MTA to request a second MTA to

forward it outstanding mail messages. The ETRN operation is useful for intermittently connected

mail servers.

4.2.3 Postfix Tables

Postfix does not have a policy specification language. Instead it uses several lookup tables that are

created by the email administrator. Each table defines parameters that control the delivery of mail

within the Postfix system.

• access. The smtpd process uses the access table. The table maps remote SMTP

hosts to an accept/deny table for spam filtering.

• aliases. The mapping of alternative recipients to local mailboxes is stored in aliases

table.

39



• canonical. The canonical table maps alternative mailbox names to real mailboxes

for message headers.

• relocated. The relocated table maps an old mailbox name to a new name.

• transport. The transport table maps domain names to delivery methods for

remote connectivity and delivery.

• virtual. The task of the virtual table is to map and manage virtual domains.

The mail administrator creates each lookup table as a plain ASCII text file. Once the text file

is created, a binary database file is created using the postmap command. Postfix uses the binary

database file when searching for lookup tables for better performance.

4.2.4 Interfaces of Postfix Processes

Postfix processes communicate between themselves using Internet sockets (inet), Unix sockets (unix)

and Unix named pipes (fifo). In a typical configuration, smtpd uses internet sockets (inet) as

communication option. pickup and qmgr uses fifo. Other processes, namely cleanup, trivial-

rewrite, smtp, local etc., use the Unix sockets option.

Each transport method has its own underlying mechanism for initiating and terminating connec-

tions. The Postfix software handles all of the low-level details required for those communications.

The availability of channels to outside processes is specified by a special field (‘private’) in the con-

figuration file. Postfix system uses two subdirectories, public and private, to contain the named

pipes needed by each service. The private subdirectory contains the pipes for processes marked

as private, while the public sub-directory contains the pipes for processes marked as public.

For privacy reasons Postfix uses Named pipes or Unix sockets that live in a protected directory.

Postfix processes do not trust the communication payload and keeps them limited in size. In many

cases, the information passed between processes is just a file name or some status information. This

is an example of the Trust Partitioning pattern.

4.2.5 Compartmentalization and Distributed Delegation

The partitioning of Postfix processes are examples of Compartmentalization and Distributed Del-

egation Pattern. The Postfix processes are similar to corresponding qmail processes in terms of

40



functionality. The exception is the trivial-rewrite/resolve process that acts as a library for various

tasks like spam filtering and address rewriting. In qmail, spam filtering and address rewriting are

done by the qmail-send process. Creating a separate library simplifies the structure of the mail

sending process.

Effective partitioning comes from categorizing the resources and running the processes with

least privilege users. qmail has a number of users that serve different purposes. Configuration

management of qmail is difficult because of the number of user and group ids in the qmail

architecture. Postfix simplifies this scenario by having only one user.

Postfix has only one user for all these processes. During installation, one has to create a user

and a group named ‘postfix’. The ‘postfix’ user owns all the queue directories. The user has limited

privileges - it does not even need a home directory or a login shell.

The default installation of Postfix creates a maildrop queue that is world-writable and sendmail

program can directly write new messages in the queue. This poses a security problem. As an

alternative, sendmail program uses the postdrop program to write into the queue. A special

user group (‘maildrop’) is created that owns the maildrop queue. postdrop runs as that user

group and writes messages to the queue. The postdrop program is a setgid-helper that helps

un-privileged sendmail program to write into the maildrop queue.

sendmail uses Unix setuid to grant its program root privileges when they run. Postfix does

not use setuid. It uses setgid in postdrop but it setgid ’s to a lesser privilege level. That is

why it does not affect the overall security.

4.2.6 chroot Security

The fact that Postfix uses minimal number of user ids and groups in its design intuitively suggests

that it has to adopt something else to be secure. This follows the Defense in Depth principle.

Because all the processes are running under same user id, compromise in one process means that

the attacker can attack other processes and the resources that they work on. To limit this, the

processes run inside chroot jail.

chroot jail provides an added level of security by limiting the exploits of an attacker in a

specific directory. This saves the important system files. A chroot() [12] call with a pathname as

41



parameter sets up the chroot jail. After the call, the pathname becomes the root directory (‘/’)

for the process. Thus files outside the specified directory structure are considered ‘safe’ from the

chroot ’d program.

Table 4.1: Security Pattern - chroot Jail

Problem
Compartmentalization is a high level pattern that suggests breaking up the task into
smaller processes. It does not eliminate the problem of compromise in one process
affecting other processes because processes communicate. Distributing responsibil-
ity among processes reduces the vulnerability. However, processes having shared
resources (files etc.) are still not secure from attack. How can we design a system
that is secure in a manner that compromise in one process does not affect another?

Solution
Run the processes under separate least privilege user ids. Also, the pro-
grams/processes should be run in a controlled environment with limited access to
system files. This will limit the exploits of an attacker. In UNIX, this is achieved
by running the processes in a chroot jail.

All of the Postfix programs (except local and pipe) can run using the chroot environment.

Postfix chroot script sets /var/spool/postfix as the root directory by default. This would

require a modification of the /var/spool/postfix directory in a manner that it contains copies

of specific system files and libraries and has a specific directory structure to pass as a fake root.

Postfix processes do not run in a chroot environment by default. The master configuration file

(master.cf) of Postfix has to be modified to include Postfix programs that would run in the chroot

environment. Programs that communicate with remote hosts, such as smtpd and smtp are the

most susceptible to attacks by malicious attackers. So they are almost always run in a chroot jail.

A number of things have to be considered prior to the setup of chroot jail. A process with root

privileges can break the chroot jail [16]. Therefore, the process must run with a less-privileged

user id. Also, writing privileges are removed from the chroot directory, because in that case

an attacker can dump malicious files in the chroot directory that can be accessed by processes

running outside the chroot ’d environment.

Postfix architecture is designed to run under chroot jail. It is broken up into many small

programs that are specialized into specific tasks. This way, setting up the chroot environment

42



is easy. This setup involves only toggling the postfix daemon’s chroot options in the main

configuration (main.cf) file. Some binary-package distributions (like in SuSe LINUX) toggle the

appropriate daemons to chroot automatically during postfix installation.

4.2.7 Pre-forking

Postfix is up to three times as fast as its nearest competitor. Postfix uses web server tricks to

reduce process creation overhead and uses other tricks to reduce file system overhead, without

compromising reliability. Pre-forking is used in web servers like Apache for better performance.

In qmail, processes are forked on demand and their lifetime is limited for the duration of

servicing the request. Postfix tries to improve this by avoiding the process creation overhead. The

master daemon is resident and it runs other daemons on demand. It spawns a number of processes

beforehand and handles them the task when a request is made. The pre-forking mechanism is

widely used in Apache server for performance improvement. However, Apache has sophisticated

modules for resource pooling and load balancing unlike Postfix. Postfix only pre-forks up a pool

with a size that has been specified through command line. The pre-forked processes serve a fixed

number of requests also specified through command line arguments. After the process dies, the

parent process forks off another in replacement.

Table 4.2: Security Pattern - Secure Pre-forking

Problem
The consequences of security compromise are worse in case of daemon processes
because they have a long lifetime. How can the vulnerability associated with daemon
processes be minimized?

Solution
Limit the lifetime of daemon processes and fork them again after a configurable, short
lifetime. Limit the number of requests handled by daemons. Run the daemons in a
contained environment to minimize the exploits.

There are a lot of trade offs with pre-forking architecture. The most critical issue is the vulner-

ability it has associated with it. In qmail, even though some malicious user manages to control a

process, that process only has a limited lifetime. In case of pre-forked processes, the malicious user

has more time before the process dies. That is another reason why chroot jail is used to limit the

43



exploits during a security breach.

Another issue with this architecture is the complexity. This means more bugs, less portability,

and a bigger binary. The performance improvement of pre-forking only becomes evident in case of

heavy load. In case of light load, the pre-forked processes occupy memory and become a bottleneck

instead.

4.2.8 Reliable Mail Queuing and Mailbox Management

Postfix uses the same patterns from qmail for reliable mail queuing. The Postfix process writing

in the central mail queue is cleanup. Instead of implementing the mail queue as one single

directory with subdirectories, Postfix has several queues to handle mail storage task. This is only

semantically different because the underlying file system implementation of the queue is the same.

Like qmail , the queue directory is split into sub-directories for improved search performance.

Each of the queue directories is split into two levels of subdirectories. Messages are placed into a

sub-directory based on the first two characters of its filename.

Figure 4.2: Postfix queue in underlying file system

As new messages are received in the message queues, corresponding sub-directories are created.

As files are retrieved from the directories, other messages use the sub-directories.

For mailbox management, Postfix uses the ‘Maildir’ format of qmail. However, it also has

44



support for ‘mbox’ format. ‘mbox’ is unreliable but Postfix uses it to retain compatibility with

sendmail. The rationale here is compatibility not reliability of message storage.

4.2.9 Multi-threading

Postfix processes use multi-threading wherever possible to improve performance. However, there

is one exception that is made to achieve security. The maildrop queue is processed by single-

threaded pickup service. Because, this process lies in the outer boundary of the program and

communicates with outer processes it is safer if it is created single-threaded. Thus performance is

given lower priority in comparison to security.

Table 4.3: Security Pattern - Single Threaded Facade

Problem
Even though multi-threading improves performance, it requires careful resource
management and synchronization. The processes communicating with outside en-
vironment are more vulnerable. Therefore the internal design of these processes
should be simple. How can this simplicity be achieved?

Solution
The processes in the perimeter of the system should be such that they perform a
single task. Again, they should be single-threaded because multi-threading involves
complex resource management.

4.2.10 File System Update

The performance of an MTA is limited by the file system since both qmail and Postfix transfers

messages from one directory to another during its delivery phase. Poor file system performance

would result in long end-to-end message delivery time.

Postfix improves performance by using softupdates. softupdates is an implementation

technique that uses delayed writes for meta-data updates. With softupdates the cost of retaining

integrity is low and performance asymptotically approaches that of a memory-based file system.

Also, additional update sequencing methodology can be added with little loss of performance. This

improves security and integrity.

softupdates increases disk activity speed and decreases disk I/O through ‘trickle sync’ facility

45



that is incorporated into the kernel for more efficient disk synching operations. softupdates will

not cause file system corruption, but, if they begin causing difficulties, then can be turned off easily

with the tunefs command.

qmail does not use softupdates. The issue against async or softupdates file systems is that if

the system crashes at the wrong moment, the system will lose mail. Under Linux, all mail-handling

file systems are mounted sync for qmail.

In reality, softupdates generally survives hardware failure without corruption, although in a

few cases it loses files that were saved right before the failure. This corresponds to losing emails.

However, even a sync mount can become corrupt in the event of hardware failure, although it is

much less likely.

4.2.11 End-to-end Message Delivery Time

People have complained about qmail ’s way of sending emails in that it creates a connection for

each email rather than bunching them up like sendmail. qmail processes the message one at a

time. Thus, if message A is targeted to enough people to flood the outbound connections, message

A uses the connections as they become available until it gets finished. Message B has to wait until

it is completed. qmail does do parallel delivery but if a single message has more recipients than

the number of available connections it “hogs” all of them until it no longer requires that many.

Postfix does not do this.

Postfix sends the new messages as they arrive (or connections become available). Thus, a

message to a very large number of people has only a minor impact on new messages.

Postfix, in fact, can do either, depending on the configuration. By default, Postfix does the

same as sendmail - multiple emails to different recipients at the same domain will be sent in one

SMTP session. Actually, Postfix performs much better than sendmail in this instance because

for any given message with multiple recipients, Postfix will open multiple connections to different

servers in parallel, whereas, for the same message, sendmail will open only one connection to each

server in turn. Postfix and sendmail follows the Batch Transaction pattern.

46



Table 4.4: Performance Pattern - Batch Transaction

Problem
Process creation and context switching overhead affects the performance of a system.
If a system has several small jobs, then this overhead becomes significant. How can
we improve performance of a system that handles similar tasks?

Solution
Batch transactions to eliminate overhead. Group related tasks and perform them at
a time to avoid task switching and process creation overhead.

4.2.12 Resource Management

Different strategies are adopted by MTAs for resource management. Disk space is managed by

partitioning and limiting the disk space with quotas. File size can be limited by OS directives (like

rlimit). Similar ideas apply for program memory segments like data segment and stack segment.

Some programs will spawn an arbitrary number of children, using up all memory even though

per-process memory is limited. For example, inetd can start any number of children to handle

TCP connections; its fork−per−second limit does not provide effective protection against a flood

of long-term TCP connections. One can control the number of processes per uid with the maxproc

rlimit, but this is useless for root daemons. qmail provides a solution by replacing inetd with

tcpserver, which provides a concurrency limit.

Bernstein and Venema take different approaches to resource limitation. Bernstein prefers to use

general resource limitation tools like softlimit. Venema prefers to build resource limitation into

each program that uses resources. Therefore, Bernstein doesn’t consider this a bug, but Venema

does. The fact is that an LWQ-style installation using softlimit on the qmail-smtpd processes is

not vulnerable to these attacks.

4.2.13 Spam Handling Policy

Spam handling is not directly built into qmail architecture. Patches of qmail have been written

to add this to the base architecture. Postfix, however, has policies built in a number of places to

handle spam.

Postfix uses a number of maps and filters for this purpose. The filter files are located in

47



Table 4.5: Reliability Pattern - DoS Safety

Problem
Denial of Service attack is tackled by adopting several network-based strategies.
However, Defense in Depth principle suggests that the system architecture should
be resilient to such attacks as well. How can we design a system that provides
internal DoS safety?

Solution
Protect against Denial of Service attacks by setting resource limit. This can be
done by using per-process resource management or by adopting operating systems
resource management features.

/${installation-folder}/maps directory. These files are written as regular expression compati-

ble. They can also be PCRE (Perl Compatible Regular Expression).

Spam checking is done in several phases. Header and body checks are useful to identify and

discard spam. The Subject header is the most popular to reject for based on words or phrases.

The X-Mailer header can be used to identify some software or mail clients that are used almost

exclusively for spam. Body checks are done to scan content for phrase patterns and discard email

based on that information. Also this is useful for virus filtering.

A number of internal and external lists of clients/hosts/senders are used to scan and filter based

on sender addresses and domains. Mails coming from someone in these lists would be discarded.

Postfix has a number of access lists that it keeps internally. These lists are used to keep the access

table up-to-date.

Another way to fight spam is to verify users and domains by using ‘verify’ lists. In this case,

Postfix checks on the MX host responsible for the domain portion of the sender’s mail address.

This check will verify that the address is valid and is capable of receiving email. However, this

connects out to another mail server, every time Postfix receives an email, so this is done sparingly.

Postfix also uses services from lists available via DNS like RBL (Real-time Black-hole List) or

RHSBL (Right Hand Side Black-hole List). These list the addresses of mail servers known (or

believed) to send spam.

The smtpd process filters spam using RBL and RHSBL lists when the mail is accepted and

rejects mail if it is a spam. The header and body checks are done by cleanup and qmgr process

48



with the help of trivial-rewrite/resolve daemon. All the incoming traffic goes through cleanup

and it works on the messages to ensure proper formatting and spam handling. This is an example

of Policy Enforcement Point [6] pattern.

Table 4.6: Security Pattern - Policy Enforcement Point

Problem
Malicious attackers attack a system through processes of the system that commu-
nicates with outsiders. If the number of processes communicating with outside
environment grows large, then it is very difficult to maintain security because the
attack can come through various points of access. How can security be achieved in
this scenario?

Solution
Channel all outside communication through one point of the system. Use authenti-
cation and other security mechanism at that point by defining security policies.

In qmail, no matter where the messages come from, they all pass from the queue. A message

can be received either by a local process or by a remote process through the SMTP protocol.

Locally generated messages are handled by qmail-inject while remotely generated are handled by

qmail-smtpd.

The spam check can be added in different points, depending on the target messages. In order

to scan incoming messages, the solution is to wrap the qmail-smtpd process in order to get it to

check the messages as soon the SMTP transaction is finished (like Postfix). This is a better option

but it has some consequences. Because all the messages are checked before insertion, forwarded

messages that are re-queued by qmail-local will be checked by the spam checker each time they

will be put the queue, wasting a lot of CPU time. Similar checking will happen in case of bounce

messages. These are handled by using complex wrappers.

Adding this functionality to qmail-smtpd would involve moving/copying the functionalities

from qmail-local to qmail-smtpd. This would necessitate qmail-smtpd to have access to home

directories as qmail-local has. This is insecure. Again, in many cases, qmail-smtpd would be

unable to determine conclusively whether an address is valid or not. (For example, consider the

case where ∼alias/.qmail-default exists or a virtual domain has a .qmail-default.)

Validating recipients during the SMTP session makes it trivial for spammers to determine which

49



addresses are deliverable. A spammer can quickly run through a dictionary of possible recipients

and the MTA will obligingly validate them. The standard fix to this problem, tarpitting, adds

unnecessary complexity to the SMTP daemon.

4.3 Conclusion

Although the design of qmail and Postfix are not the same, they use common security patterns.

Their designs are closer to each other than to the design of sendmail because security was a more

important part of their original requirements than it was of sendmail ’s. Some of the differences

between qmail and Postfix are because performance is a more important requirement for Postfix.

But both of them are evidence that security does not have to come at the cost of performance.

A good design can provide security, reliability, performance, and understandability. Although

sometimes these software qualities conflict, often they support each other, and a good design can

simultaneously achieve them all.

50


