docs/diploma
diff thesis/tex/2-MarketAnalysis.tex @ 225:47af8eb539cf
spell checking
author | meillo@marmaro.de |
---|---|
date | Tue, 06 Jan 2009 18:04:18 +0100 |
parents | 2575c1e8054a |
children | 724cc6057105 |
line diff
1.1 --- a/thesis/tex/2-MarketAnalysis.tex Tue Jan 06 10:13:07 2009 +0100 1.2 +++ b/thesis/tex/2-MarketAnalysis.tex Tue Jan 06 18:04:18 2009 +0100 1.3 @@ -7,7 +7,7 @@ 1.4 1.5 \section{Electronic communication technologies} 1.6 1.7 -Electronic communication is ``communication by computer'', according to the \name{WordNet} database of \name{Princeton University} \citeweb{wordnet}. Mobile phones and telefax machines should be seen as computers here too. The \name{Science Glossary} of the \name{Pennsylvania Department of Education} describes electronic communication as ``System for the transmission of information using electronic technology (e.g., digital cameras, cellular telephones, Internet, television, fiber optics).'' \citeweb{science-glossary-pa}. 1.8 +Electronic communication is ``communication by computer'', according to the \name{WordNet} database of \name{Princeton University} \citeweb{wordnet}. Mobile phones and fax machines should be seen as computers here too. The \name{Science Glossary} of the \name{Pennsylvania Department of Education} describes electronic communication as ``System for the transmission of information using electronic technology (e.g., digital cameras, cellular telephones, Internet, television, fiber optics).'' \citeweb{science-glossary-pa}. 1.9 1.10 Electronic communication needs no transport of tangible things, only electrons, photons, or radio waves need to be transmitted. Thus electronic communication is fast in general. With costs mainly for infrastructure and very low costs for data transmission, electronic communication is also cheap communication. As underlying transport infrastructure, primary the Internet is used; thus electronic communication is available nearly everywhere around the world. These properties---fast, cheap, available---make electronic communication well suited for long distance communication. 1.11 1.12 @@ -127,7 +127,7 @@ 1.13 1.14 A \NAME{SWOT} analysis regards the strengths and weaknesses of a subject against the opportunities and threats of its market. The slightly altered form called \name{Dialectical {\smaller SWOT} analysis}, which is used here, is described in \cite{powerof2x2}. \NAME{SWOT} analysis should always focus on a specific goal to reach with the product. In this case, the main goal is to make email future-safe. 1.15 1.16 -The two dimension---a subject and the market---are regarded in relation to each other by the analysis. Here the analysis shall be driven by the market's dimension. Thus first opportunities of the market are identified and split into being stengths or weaknesses of email. Then the same is done for threats of the market. 1.17 +The two dimension---a subject and the market---are regarded in relation to each other by the analysis. Here the analysis shall be driven by the market's dimension. Thus first opportunities of the market are identified and split into being strengths or weaknesses of email. Then the same is done for threats of the market. 1.18 1.19 \subsubsection*{Threats} 1.20 The market's main threat is \emph{spam}, also named \name{junk mail} or \name{unsolicited commercial email} (\NAME{UCE}). David~A.\ \person{Wheeler} is clear about it: 1.21 @@ -184,7 +184,7 @@ 1.22 1.23 1.24 \subsubsection*{Provider independence} 1.25 -Today's email structure is heavily dependent on email providers. This means, most people have email addresses from some provider. These can be providers that offer email accounts in addition to their regular services, for example online connections. \NAME{AOL} and \name{T\mbox{-}On\-line} for instance do so. Or specialized email providers that commonly offer freemail as well as enhanced mail services, one must pay for. Examples for email providers are \NAME{GMX}, \name{Yahoo}, and \name{Hotmail}. %fixme: check for non-breakable dash 1.26 +Today's email structure is heavily dependent on email providers. This means, most people have email addresses from some provider. These can be providers that offer email accounts in addition to their regular services, for example online connections. \NAME{AOL} and \name{T\mbox{-}On\-line} for instance do so. Or specialized email providers that commonly offer free mail as well as enhanced mail services, one must pay for. Examples for email providers are \NAME{GMX}, \name{Yahoo}, and \name{Hotmail}. %fixme: check for non-breakable dash 1.27 1.28 Outgoing mail is send either with the webmail client of the provider or using \name{mail user agent}s sending it to the provider for relay. Incoming mail is read with the webmail client or retrieved from the provider via \NAME{POP3} or \NAME{IMAP} to the local computer to be read using the \name{mail user agent}. This means all mail sending and receiving work is done by the provider. 1.29 1.30 @@ -205,7 +205,7 @@ 1.31 The concept works well with mobile phones where the provider knows about the client, but it does not to be a choice for computers since the provider needs to have some kind of login to push data to the user's computer. Push email, however, could swap over to computers when using a home server and no external provider. A possible scenario is a home server receiving mail from the Internet and pushing it to own workstations and smart phones. The configuration could be done by the user using some simple interface, like one configures his telephone system to have different telephone numbers ringing on specified phones. 1.32 %FIXME: add reference to push email 1.33 1.34 -Another problem is multiple clients sharing one mail box. This is only solvable by working directly in the server's mail box, which causes lots of traffic, or by storing at least information about read messages and thelike there. 1.35 +Another problem is multiple clients sharing one mail box. This is only solvable by working directly in the server's mail box, which causes lots of traffic, or by storing at least information about read messages and the like there. 1.36 1.37 1.38 \subsubsection*{New email concepts} 1.39 @@ -228,7 +228,7 @@ 1.40 1.41 1.42 1.43 -\subsection{Importances in future} 1.44 +\subsection{Important in future} 1.45 \label{sec:what-will-be-important} 1.46 1.47 Provider independence through running an own mail server at home asks for easy configuration of the \MTA. Providers have specialists to configure the systems, but ordinary people do not. Solutions are either having some home service system for computer configuration established with specialists coming to ones home to set up the systems; like it is already common for problems with the power and water supply systems. Or configuration needs to be easy and fool-prove, to be done by the owner himself. The latter solution depends on standardized parts that fit together seamlessly. The technology must not be a problem itself. Only settings custom to the users environment should be left open for him to set. This of course needs to be doable using a simple configuration interface like a web interface. Non-technical educated users should be able to configure the system. 1.48 @@ -239,7 +239,7 @@ 1.49 1.50 When \MTA{}s become popular on home servers and maybe even on workstations and smart phones, then performance will be less important. Providers need \mta{}s that process large amounts of mail in short time. However, there is no need for home servers and workstations to handle that much mail; they need to process far less email messages per time unit. Thus performance will probably not be a main requirement for an \MTA\ in future, if they mainly run on private machines. 1.51 1.52 -New mailing concepts and architectures like push email or \name{Internet Mail 2000} will, if they succeed, require \mta{}s to adopt the new technology. \MTA{}s that are not able to change are going to be sorted out by evolution. Thus it is important not to focus too much on one use case, but to stay flexible. Allman saw the flexibility of \sendmail\ one reason for its huge success (see section \ref{sec:sendmail}). 1.53 +New mailing concepts and architectures like push email or \name{Internet Mail 2000} will, if they succeed, require \mta{}s to adopt the new technology. \MTA{}s that are not able to change are going to be sorted out by evolution. Thus it is important not to focus too much on one use case, but to stay flexible. \person{Allman} saw the flexibility of \sendmail\ one reason for its huge success (see section \ref{sec:sendmail}). 1.54 1.55 Another important requirement for all kinds of software will be security. There is a constant trend coming from completely non-secured software, in the 70s and 80s, over growing security awareness, in the 90s, to security being a primary goal, now. This leads to the conclusion that software security will be even more important within the next years. As more clients get connected to the Internet and especially more computers are listening for incoming connections (like an \MTA\ in a home server), there are more possibilities to break into systems. Securing of software systems will be done with increasing effort in future. 1.56 1.57 @@ -258,23 +258,23 @@ 1.58 \section{Conclusion} 1.59 It seems as if electronic mail or a similar technology has good chances to survive the next decades. 1.60 1.61 -It is assumed that it always will be important to send information messages. Those can be notes from people or notifications from systems. No other, current available, communication technology is as suitable for this kind of information transfer, as email, \NAME{SMS}, voice mail, and other asynchronous communication technologies. Synchronous communication, in contrast, is focused on dialog and normally interrupts people. The here needed kind of messages should not interrupt people, unless urgent, and they do not need two-way information exchange. Although synchronous communication could be used for tansfering messages, it is not the best choice. The best choice is an asynchronous technology. Thus at least one asynchronous communication technology is likely to survive. 1.62 +It is assumed that it always will be important to send information messages. Those can be notes from people or notifications from systems. No other, current available, communication technology is as suitable for this kind of information transfer, as email, \NAME{SMS}, voice mail, and other asynchronous communication technologies. Synchronous communication, in contrast, is focused on dialog and normally interrupts people. The here needed kind of messages should not interrupt people, unless urgent, and they do not need two-way information exchange. Although synchronous communication could be used for transferring messages, it is not the best choice. The best choice is an asynchronous technology. Thus at least one asynchronous communication technology is likely to survive. 1.63 1.64 Whether email will be the surviving one, is not possible to know by now. It currently seems likely that \name{unified messaging} will be the future for asynchronous communication. But Unified Messaging is more a concept than a technology itself. This concept will base upon one or many underlying transport technologies, like email, \NAME{SMS}, and the like. Its goal is to integrate the transport technologies in order to hide them from the user's view. Currently, email is the most used asynchronous electronic communication technology. It is matured, flexible, and extendable, as well as standardized. These advantages make email a good base transport technology for Unified Messaging. Anyhow, whether email will be the basis for Unified Messaging or not---\MTA{}s are a software needed for all asynchronous communication methods: programs that transfer messages from senders to destinations. Thus, their future is bright. 1.65 1.66 %The trends in the communication market are consolidation, integration, and the merge of communication hardware. All this goes along with market's change to Unified Messaging. 1.67 1.68 -Unified Communication, as next step after Unified Messaging, is about the integration of asynchonous an synchronous communication channels. It seems impossible to merge the two worlds on basis of email in an evolutionary way. As only a revolutionary change of the whole email concept would make that merge possible, it is best to ignore it. New designed technologies are usually superior to heavily patched and bent old technologies, anyway. A general merge of synchronous and asynchronous communication has good chances to be fatal for email. 1.69 +Unified Communication, as next step after Unified Messaging, is about the integration of asynchronous an synchronous communication channels. It seems impossible to merge the two worlds on basis of email in an evolutionary way. As only a revolutionary change of the whole email concept would make that merge possible, it is best to ignore it. New designed technologies are usually superior to heavily patched and bent old technologies, anyway. A general merge of synchronous and asynchronous communication has good chances to be fatal for email. 1.70 1.71 Until Unified Communication will become reality---if ever---electronic mail has a good position, also as basis for Unified Messaging. 1.72 1.73 1.74 Not only the market influences email's future safety, but also must the email technology itself do its part in evolving to satisfy upcoming needs. Actions to take were discovered by using the \NAME{SWOT} analysis. These are: Prepare against spam. Search solutions for large data transfers and increasing growth and ramification of networks. Exploit standardization, modularity, and extendability. 1.75 1.76 -Also needed is awareness for new trends like: Provider independence, new delivery concepts, and completely new emailing concepts, introducing new protocols. Easy configuration will also be important, security will be essentiel. 1.77 +Also needed is awareness for new trends like: Provider independence, new delivery concepts, and completely new emailing concepts, introducing new protocols. Easy configuration will also be important, security will be essential. 1.78 1.79 1.80 -What kinds of \MTA{}s will be needed in future? Probably ones running on home servers and workstations. This is what \masqmail\ was designed for. But the dial-up Internet connections, which are central to \masqmail's design, become rare. But mobile clients that move between differnt networks, do need relaying over different locations, dependent on external influences, too. This makes \masqmail\ still be a good \MTA\ for various situations. \masqmail\ is additionally small and it is much easier to configure for situations that are common to workstations and home servers, than other \MTA{}s. Thus \masqmail\ is generally a good program to have for several setups. These setups were quite common some years ago, but are rare now. The trends expected for the next years will lead to new situations where \masqmail\ will be a valuable \MTA. 1.81 +What kinds of \MTA{}s will be needed in future? Probably ones running on home servers and workstations. This is what \masqmail\ was designed for. But the dial-up Internet connections, which are central to \masqmail's design, become rare. But mobile clients that move between different networks, do need relaying over different locations, dependent on external influences, too. This makes \masqmail\ still be a good \MTA\ for various situations. \masqmail\ is additionally small and it is much easier to configure for situations that are common to workstations and home servers, than other \MTA{}s. Thus \masqmail\ is generally a good program to have for several setups. These setups were quite common some years ago, but are rare now. The trends expected for the next years will lead to new situations where \masqmail\ will be a valuable \MTA. 1.82 1.83 1.84