comparison thesis/tex/4-MasqmailsFuture.tex @ 316:f3a86ce788ec

spell checking
author meillo@marmaro.de
date Wed, 21 Jan 2009 15:19:25 +0100
parents 9038d2030d9a
children 3b7680af0ebe
comparison
equal deleted inserted replaced
315:734afc9b1a9f 316:f3a86ce788ec
93 93
94 94
95 \paragraph{\RF6: Authentication} 95 \paragraph{\RF6: Authentication}
96 One thing to avoid is being an \name{open relay}. Open relays allow to relay mail from everywhere to everywhere. This is a source of spam. The solution is restricting relay\footnote{Relaying is passing mail, that is not from and not for the own system, through it.} access. It may be also wanted to refuse all connections to the \MTA\ except ones from a specific set of hosts. 96 One thing to avoid is being an \name{open relay}. Open relays allow to relay mail from everywhere to everywhere. This is a source of spam. The solution is restricting relay\footnote{Relaying is passing mail, that is not from and not for the own system, through it.} access. It may be also wanted to refuse all connections to the \MTA\ except ones from a specific set of hosts.
97 97
98 Several ways to restrict access are available. The most simple one is restriction by the \NAME{IP} address. No extra complexity is added this way, but the \NAME{IP} addresses have to be static or within known ranges. This approach is often used to allow relaying for local nets. The access check can be done by the \MTA\ or by a guard (e.g.\ \NAME{TCP} \name{Wrappers}) before. The main advantage here is the minimal setup and maintainence work needed. This kind of access restriction is important to be implemented. 98 Several ways to restrict access are available. The most simple one is restriction by the \NAME{IP} address. No extra complexity is added this way, but the \NAME{IP} addresses have to be static or within known ranges. This approach is often used to allow relaying for local nets. The access check can be done by the \MTA\ or by a guard (e.g.\ \NAME{TCP} \name{Wrappers}) before. The main advantage here is the minimal setup and maintenance work needed. This kind of access restriction is important to be implemented.
99 99
100 This authentication based on \NAME{IP} addresses is impossible in situations where hosts with changing \NAME{IP} addresses, that are not part of a known subnet, need access. Then a authentication mechanism based on some \emph{secret} is required. Three common approaches exist: 100 This authentication based on \NAME{IP} addresses is impossible in situations where hosts with changing \NAME{IP} addresses, that are not part of a known sub net, need access. Then a authentication mechanism based on some \emph{secret} is required. Three common approaches exist:
101 \begin{enumerate} 101 \begin{enumerate}
102 \item \SMTP-after-\NAME{POP}: Uses authentication on the \NAME{POP} protocol to permit incoming \SMTP\ connections for a limited time afterwards. The variant \SMTP-after-\NAME{IMAP} exists too. 102 \item \SMTP-after-\NAME{POP}: Uses authentication on the \NAME{POP} protocol to permit incoming \SMTP\ connections for a limited time afterwards. The variant \SMTP-after-\NAME{IMAP} exists too.
103 \item \SMTP\ authentication: An extension to \SMTP. It allows to request authentication before mail is accepted. Here no helper protocols are needed. 103 \item \SMTP\ authentication: An extension to \SMTP. It allows to request authentication before mail is accepted. Here no helper protocols are needed.
104 \item Certificates: The identity of a user or a host is confirmed by certificates that are signed by trusted authorities. Certificates are closely related to encryption, they do normally satisfy both needs: \NAME{SSL} tunnels encrypt the data transmission and allow to identify the remote user/host by his certificate. 104 \item Certificates: The identity of a user or a host is confirmed by certificates that are signed by trusted authorities. Certificates are closely related to encryption, they do normally satisfy both needs: \NAME{SSL} tunnels encrypt the data transmission and allow to identify the remote user/host by his certificate.
105 \end{enumerate} 105 \end{enumerate}
111 \label{requirement-encryption} 111 \label{requirement-encryption}
112 Electronic mail is vulnerable to sniffing attacks, because in generic \SMTP\ all data transfer is unencrypted. The message's body, the header, and envelope are all unencrypted, but also authentication dialogs that transfer plain text passwords (e.g.\ \NAME{PLAIN} and \NAME{LOGIN}). Hence encryption is throughout important. 112 Electronic mail is vulnerable to sniffing attacks, because in generic \SMTP\ all data transfer is unencrypted. The message's body, the header, and envelope are all unencrypted, but also authentication dialogs that transfer plain text passwords (e.g.\ \NAME{PLAIN} and \NAME{LOGIN}). Hence encryption is throughout important.
113 113
114 The common way to encrypt \SMTP\ dialogs is using \name{Transport Layer Security} (short: \TLS, the successor of \NAME{SSL}). \TLS\ encrypts the datagrams of the \name{transport layer}. This means it works below the application protocols and can be used with any of them \citeweb{wikipedia:tls}. 114 The common way to encrypt \SMTP\ dialogs is using \name{Transport Layer Security} (short: \TLS, the successor of \NAME{SSL}). \TLS\ encrypts the datagrams of the \name{transport layer}. This means it works below the application protocols and can be used with any of them \citeweb{wikipedia:tls}.
115 115
116 Using secure tunnels that are provided by external programs, should be prefered over including encryption into the application, because the application needs not to bother with encryption then. Outgoing \SMTP\ connections can get encrypted using a secure tunnel, created by an external application (like \name{openssl}). But incoming connections can not use external secure tunnels, because the remote \NAME{IP} address is hidden then; all connections would appear to come from localhost instead. Figure \ref{fig:stunnel} depicts the situation of using an application like \name{stunnel} for incoming connections. The connection to port 25 comes from localhost and this information reaches the \MTA. Authentication based on \NAME{IP} addresses and many spam prevention methods are useless then. 116 Using secure tunnels that are provided by external programs, should be preferred over including encryption into the application, because the application needs not to bother with encryption then. Outgoing \SMTP\ connections can get encrypted using a secure tunnel, created by an external application (like \name{openssl}). But incoming connections can not use external secure tunnels, because the remote \NAME{IP} address is hidden then; all connections would appear to come from localhost instead. Figure \ref{fig:stunnel} depicts the situation of using an application like \name{stunnel} for incoming connections. The connection to port 25 comes from localhost and this information reaches the \MTA. Authentication based on \NAME{IP} addresses and many spam prevention methods are useless then.
117 117
118 \begin{figure} 118 \begin{figure}
119 \begin{center} 119 \begin{center}
120 \includegraphics[scale=0.75]{img/stunnel.eps} 120 \includegraphics[scale=0.75]{img/stunnel.eps}
121 \end{center} 121 \end{center}
136 136
137 Filtering spam can be done by either refusing spam during the \SMTP\ dialog or by checking for spam after the mail was accepted and queued. Both ways have advantages and disadvantages, so modern \MTA{}s use them in combination. 137 Filtering spam can be done by either refusing spam during the \SMTP\ dialog or by checking for spam after the mail was accepted and queued. Both ways have advantages and disadvantages, so modern \MTA{}s use them in combination.
138 138
139 Spam is identified by the results of a set of checks. Static rules, querying databases (\NAME{DNS} blacklists \cite{cole07} \cite{levine08}), requesting special client behavior (\name{greylisting} \cite{harris03}, \name{hashcash} \cite{back02}), or statistical analysis (\name{bayesian filters} \cite{graham02}) are checks that may be used. Running more checks leads to better results, but takes more system resources and more time. 139 Spam is identified by the results of a set of checks. Static rules, querying databases (\NAME{DNS} blacklists \cite{cole07} \cite{levine08}), requesting special client behavior (\name{greylisting} \cite{harris03}, \name{hashcash} \cite{back02}), or statistical analysis (\name{bayesian filters} \cite{graham02}) are checks that may be used. Running more checks leads to better results, but takes more system resources and more time.
140 140
141 Doing some basic checks during the \SMTP\ dialog seems to be a must \cite[page~25]{eisentraut05}. Including them into the \MTA\ makes them fast to avoid \SMTP\ dialog timeouts. For modularity and reusability reasons internal interfaces to specialized modules seem to be best. 141 Doing some basic checks during the \SMTP\ dialog seems to be a must \cite[page~25]{eisentraut05}. Including them into the \MTA\ makes them fast to avoid \SMTP\ dialog timeouts. For modularity and risibility reasons internal interfaces to specialized modules seem to be best.
142 142
143 More detailed checks after the message is queued should be done using external scanners. Interfaces to invoke them need to be defined. (See also the remarks about \name{amavis} in the next section.) 143 More detailed checks after the message is queued should be done using external scanners. Interfaces to invoke them need to be defined. (See also the remarks about \name{amavis} in the next section.)
144 144
145 145
146 146
171 %fixme: refer to ch01 and ch02 171 %fixme: refer to ch01 and ch02
172 These non-functional requirements are named ``\NAME{RG}'' for ``requirement, general''. 172 These non-functional requirements are named ``\NAME{RG}'' for ``requirement, general''.
173 173
174 174
175 \paragraph{\RG1: Security} 175 \paragraph{\RG1: Security}
176 \MTA{}s are critical points for computer security, as they are accessible from external networks. They must be secured with high effort. Properties like the need for high privilege level, from outside influenced work load, work on unsafe data, and demand for reliability, increase the need for security. This is best done by modularization, also called \name{compartementalization}, as described in section \ref{sec:discussion-mta-arch}. 176 \MTA{}s are critical points for computer security, as they are accessible from external networks. They must be secured with high effort. Properties like the need for high privilege level, from outside influenced work load, work on unsafe data, and demand for reliability, increase the need for security. This is best done by modularization, also called \name{compartmentalization}, as described in section \ref{sec:discussion-mta-arch}.
177 177
178 \masqmail\ needs to be secure enough for its target field of operation. \masqmail\ is targeted to workstations and private networks, with explicit warning to not use it on permanent online hosts \citeweb{masqmail:homepage2}. But as non-permanent online connections and trustable environments become rare, \masqmail's security should be so good, that it is usable with permanent online connections and in unsafe environments. For example should mails with bad content not break \masqmail. 178 \masqmail\ needs to be secure enough for its target field of operation. \masqmail\ is targeted to workstations and private networks, with explicit warning to not use it on permanent online hosts \citeweb{masqmail:homepage2}. But as non-permanent online connections and trustable environments become rare, \masqmail's security should be so good, that it is usable with permanent online connections and in unsafe environments. For example should mails with bad content not break \masqmail.
179 179
180 180
181 \paragraph{\RG2: Reliability} 181 \paragraph{\RG2: Reliability}
182 Reliability is the second essential quality property for an \MTA. Mail for which the \MTA\ took responsibility must never get lost while it is within the \MTA{}s responsibility. The \MTA\ must not be \emph{the cause} of any mail loss, no matter what happens. Unreliable \mta{}s are of no value. However, as the mail transport infrastructure are distributed systems, one of the communication partners or the transport medium may crash at any time during mail tranfer. Thus reliability is needed for mail transfer communication too. 182 Reliability is the second essential quality property for an \MTA. Mail for which the \MTA\ took responsibility must never get lost while it is within the \MTA{}s responsibility. The \MTA\ must not be \emph{the cause} of any mail loss, no matter what happens. Unreliable \mta{}s are of no value. However, as the mail transport infrastructure are distributed systems, one of the communication partners or the transport medium may crash at any time during mail transfer. Thus reliability is needed for mail transfer communication too.
183 183
184 The goal is to transfer exactly one copy of the message. \person{Tanenbaum} evaluates the situation and comes to the conclusion that ``in general, there is no way to arrange this.'' \cite[pages~377--379]{tanenbaum02}. Only strategies where now mail gets lost are acceptable; he identifies three of them, but one generates more duplicates than the others, so two strategies remain. (1) The client always reissues the transfer; the server first sends an acknowledgement, then handles the transfer. (2) The client reissues the transfer only if no acknowledgement was received; the server first handles the transfer and sends the acknowledgement afterwards. The first strategy does not need acknowledgements at all, however, it will lose mail if the second transfer fails too. 184 The goal is to transfer exactly one copy of the message. \person{Tanenbaum} evaluates the situation and comes to the conclusion that ``in general, there is no way to arrange this.'' \cite[pages~377--379]{tanenbaum02}. Only strategies where now mail gets lost are acceptable; he identifies three of them, but one generates more duplicates than the others, so two strategies remain. (1) The client always reissues the transfer; the server first sends an acknowledgment, then handles the transfer. (2) The client reissues the transfer only if no acknowledgment was received; the server first handles the transfer and sends the acknowledgment afterwards. The first strategy does not need acknowledgments at all, however, it will lose mail if the second transfer fails too.
185 185
186 Hence, mail transfer between two processes must use the strategy: The client reissues if it receives no acknowledgement; the server first handles the message and then sends the acknowledgement. This strategy only leads to duplicates if a crash happens in the time between the message is fully transfered to the server and the acknowlegement is received by the client. No mail will get lost. 186 Hence, mail transfer between two processes must use the strategy: The client reissues if it receives no acknowledgment; the server first handles the message and then sends the acknowledgment. This strategy only leads to duplicates if a crash happens in the time between the message is fully transferred to the server and the acknowledgment is received by the client. No mail will get lost.
187 187
188 188
189 \paragraph{\RG3: Robustness} 189 \paragraph{\RG3: Robustness}
190 Being robust means handling errors properly. Small errors may get corrected, large errors may kill a process. Killed processes should restarted automatically and lead to a clean state again. Log messages should be written in every case. Robust software does not need a special environment, it creates a friendly environment itself. \person{Raymond}'s \name{Rule of Robustness} and his \name{Rule of Repair} are good descriptions \cite[pages~18--21]{raymond03}. 190 Being robust means handling errors properly. Small errors may get corrected, large errors may kill a process. Killed processes should restarted automatically and lead to a clean state again. Log messages should be written in every case. Robust software does not need a special environment, it creates a friendly environment itself. \person{Raymond}'s \name{Rule of Robustness} and his \name{Rule of Repair} are good descriptions \cite[pages~18--21]{raymond03}.
191 191
284 \paragraph{\RF1: In/out channels} 284 \paragraph{\RF1: In/out channels}
285 The incoming and outgoing channels that \masqmail\ already has (depicted in figure \ref{fig:masqmail-channels} on page \pageref{fig:masqmail-channels}) are the ones required for an \MTA{}s at the moment. Support for other protocols seems not to be necessary at the moment, although new protocols and mailing concepts are likely to appear (see section \ref{sec:email-trends}). Today, other protocols are not needed, so \masqmail\ is regarded to fulfill \RF1. But as \masqmail\ has no support for adding further protocols, delaying the work to support them until they are widely used, appears to be the best strategy anyway. 285 The incoming and outgoing channels that \masqmail\ already has (depicted in figure \ref{fig:masqmail-channels} on page \pageref{fig:masqmail-channels}) are the ones required for an \MTA{}s at the moment. Support for other protocols seems not to be necessary at the moment, although new protocols and mailing concepts are likely to appear (see section \ref{sec:email-trends}). Today, other protocols are not needed, so \masqmail\ is regarded to fulfill \RF1. But as \masqmail\ has no support for adding further protocols, delaying the work to support them until they are widely used, appears to be the best strategy anyway.
286 286
287 << smtp submission >> %fixme 287 << smtp submission >> %fixme
288 288
289 \paragraph{\RF2: Queueing} 289 \paragraph{\RF2: Queuing}
290 One single mail queue is used in \masqmail; it satisfies all current requirements. 290 One single mail queue is used in \masqmail; it satisfies all current requirements.
291 291
292 << persistence: DB >> %fixme 292 << persistence: DB >> %fixme
293 293
294 \paragraph{\RF3: Header sanitizing} 294 \paragraph{\RF3: Header sanitizing}
305 305
306 \paragraph{\RF7: Encryption} 306 \paragraph{\RF7: Encryption}
307 Similar is the situation for encryption which is also only available for outgoing channels; here a wrapper application like \name{openssl} is needed. This creates a secure tunnel to send mail trough, but state-of-the-art is using \NAME{STARTTLS}, which is not supported. For incoming channels, no encryption is available. The only possible setup to provide encryption of incoming channels is using an application like \name{stunnel} to translate between the secure connection to the remote host and the \MTA. Unfortunately, this suffers from the problem explained on page \pageref{fig:stunnel} in figure \ref{fig:stunnel}. Anyway, this would still be no \NAME{STARTTLS} support. 307 Similar is the situation for encryption which is also only available for outgoing channels; here a wrapper application like \name{openssl} is needed. This creates a secure tunnel to send mail trough, but state-of-the-art is using \NAME{STARTTLS}, which is not supported. For incoming channels, no encryption is available. The only possible setup to provide encryption of incoming channels is using an application like \name{stunnel} to translate between the secure connection to the remote host and the \MTA. Unfortunately, this suffers from the problem explained on page \pageref{fig:stunnel} in figure \ref{fig:stunnel}. Anyway, this would still be no \NAME{STARTTLS} support.
308 308
309 \paragraph{\RF8: Spam handling} 309 \paragraph{\RF8: Spam handling}
310 \masqmail\ nowadays does not provide special support for spam filtering. Spam prevention by not accepting spam during the \SMTP\ dialog is not possible at all. Spam filtering is only possible by using two \masqmail\ instances with an external spam filter inbetween. The mail flow is from the receiving \MTA\ instance, which accepts mail, to the filter application that processes and possible modifies it, to the second \MTA\ which is responsible for further delivery of the mail. This is a concept that works in general. And it is a good concept in principle to separate work with clear interfaces. But the need of two instances of the same \MTA (each for only half of the job) with doubled setup, is more a work-around. Best is to have this data flow respected in the \MTA\ design, like in \postfix. But the more important part of spam handling, for sure, is done during the \SMTP\ dialog in completely refusing unwanted mail. 310 \masqmail\ nowadays does not provide special support for spam filtering. Spam prevention by not accepting spam during the \SMTP\ dialog is not possible at all. Spam filtering is only possible by using two \masqmail\ instances with an external spam filter in between. The mail flow is from the receiving \MTA\ instance, which accepts mail, to the filter application that processes and possible modifies it, to the second \MTA\ which is responsible for further delivery of the mail. This is a concept that works in general. And it is a good concept in principle to separate work with clear interfaces. But the need of two instances of the same \MTA (each for only half of the job) with doubled setup, is more a work-around. Best is to have this data flow respected in the \MTA\ design, like in \postfix. But the more important part of spam handling, for sure, is done during the \SMTP\ dialog in completely refusing unwanted mail.
311 311
312 \paragraph{\RF9: Malware handling} 312 \paragraph{\RF9: Malware handling}
313 For malware handling applies nearly the same, except all checks are done after mail is accepted. So the possible setup is the same with the two \MTA\ instances and the filter inbetween. \masqmail\ does support such a setup, but not in a nice way. 313 For malware handling applies nearly the same, except all checks are done after mail is accepted. So the possible setup is the same with the two \MTA\ instances and the filter in between. \masqmail\ does support such a setup, but not in a nice way.
314 314
315 \paragraph{\RF10: Archiving} 315 \paragraph{\RF10: Archiving}
316 There is currently no way of archiving every message going through \masqmail. 316 There is currently no way of archiving every message going through \masqmail.
317 317
318 318
319 319
320 \paragraph{\RG1: Security} 320 \paragraph{\RG1: Security}
321 \masqmail's current security is bad. However, it seems acceptable for using \masqmail\ on workstations and private networks, if the environment is trustable and \masqmail\ is protected against remote attackers. In environments where untrusted components or persons have access to \masqmail, its security is too low. 321 \masqmail's current security is bad. However, it seems acceptable for using \masqmail\ on workstations and private networks, if the environment is trustable and \masqmail\ is protected against remote attackers. In environments where untrusted components or persons have access to \masqmail, its security is too low.
322 Its author states it ``is not designed to'' such usage \citeweb{masqmail:homepage2}. This is a clear indicator for being careful. Issues like high memory consumption, low performance, and denial-of-service attacks---things not regarded by design---may cause serious problems. In any way, is a security report missing that confirms \masqmail's security level. 322 Its author states it ``is not designed to'' such usage \citeweb{masqmail:homepage2}. This is a clear indicator for being careful. Issues like high memory consumption, low performance, and denial-of-service attacks---things not regarded by design---may cause serious problems. In any way, is a security report missing that confirms \masqmail's security level.
323 323
324 \masqmail\ uses conditional compilation to exclude unneeded functionality from the executable at complile time. Excluding code means excluding all bugs and weaknesses within this code too. Excluding unused code is a good concept to improve security. 324 \masqmail\ uses conditional compilation to exclude unneeded functionality from the executable at compile time. Excluding code means excluding all bugs and weaknesses within this code too. Excluding unused code is a good concept to improve security.
325 325
326 \paragraph{\RG2: Reliability} 326 \paragraph{\RG2: Reliability}
327 Similar is its reliability not good enough. Situations where only one part of sent message was removed from the queue, and the other part remained as garbage, showed off \citeweb{debian:bug245882}. Problems with large mail and small bandwidth were also reported \citeweb{debian:bug216226}. Fortunately, lost email was no big problem yet, but \person{Kurth} warns: 327 Similar is its reliability not good enough. Situations where only one part of sent message was removed from the queue, and the other part remained as garbage, showed off \citeweb{debian:bug245882}. Problems with large mail and small bandwidth were also reported \citeweb{debian:bug216226}. Fortunately, lost email was no big problem yet, but \person{Kurth} warns:
328 \begin{quote} 328 \begin{quote}
329 There may still be serious bugs in [masqmail], so mail might get lost. But in the nearly two years of its existence so far there was only one time a bug which caused mail retrieved via pop3 to be lost in rare circumstances. 329 There may still be serious bugs in [masqmail], so mail might get lost. But in the nearly two years of its existence so far there was only one time a bug which caused mail retrieved via pop3 to be lost in rare circumstances.
397 \subsubsection*{\TODO3: Security (\RG1)} 397 \subsubsection*{\TODO3: Security (\RG1)}
398 \masqmail's security is bad, thus the program is forced into a limited field of operation. This field of operation even shrinks as security becomes more important and networking and interaction increases. Save and trusted environment become rare. Thus improving security is an important thing to do. The focus should be on adding compartments to split \masqmail\ into separate modules. (See section \ref{sec:discussion-mta-arch}.) Further more should \masqmail's security be tested throughout to get a definitive view how good it really is and where the weak spots are. 398 \masqmail's security is bad, thus the program is forced into a limited field of operation. This field of operation even shrinks as security becomes more important and networking and interaction increases. Save and trusted environment become rare. Thus improving security is an important thing to do. The focus should be on adding compartments to split \masqmail\ into separate modules. (See section \ref{sec:discussion-mta-arch}.) Further more should \masqmail's security be tested throughout to get a definitive view how good it really is and where the weak spots are.
399 399
400 400
401 \subsubsection*{\TODO4: Reliability (\RG2)} 401 \subsubsection*{\TODO4: Reliability (\RG2)}
402 Reliability is also to improve. It is a key quality property for an \MTA, and not good enough in \masqmail. Reliability is strong related to the queue, thus improvements there are favorable. Applying ideas of \name{crash-only software} \cite{candea03} will be a good step. \person{Candea} and \person{Fox} see in killing the process the best way to stop a running program. Doing so inevitably demands for good reliability of the queue, and the startup process inevitably demands for good recovery. The critical situations for reliability are nothing special anymore, they are common. Hence they are regulary tested and will definately work. 402 Reliability is also to improve. It is a key quality property for an \MTA, and not good enough in \masqmail. Reliability is strong related to the queue, thus improvements there are favorable. Applying ideas of \name{crash-only software} \cite{candea03} will be a good step. \person{Candea} and \person{Fox} see in killing the process the best way to stop a running program. Doing so inevitably demands for good reliability of the queue, and the start up process inevitably demands for good recovery. The critical situations for reliability are nothing special anymore, they are common. Hence they are regularly tested and will definitely work.
403 403
404 404
405 \subsubsection*{\TODO5: Spam handling (\RF8)} 405 \subsubsection*{\TODO5: Spam handling (\RF8)}
406 As authentication can be a guard against spam, filter facilities have lower priority. But basic spam filtering and interfaces for external tools should be implemented in future. Configuration guides for a setup using the approach of two \masqmail\ instances with a spam scanner inbetween should be written. And at least a basic kind of spam prevention during the \SMTP\ dialog should be implemented. 406 As authentication can be a guard against spam, filter facilities have lower priority. But basic spam filtering and interfaces for external tools should be implemented in future. Configuration guides for a setup using the approach of two \masqmail\ instances with a spam scanner in between should be written. And at least a basic kind of spam prevention during the \SMTP\ dialog should be implemented.
407 407
408 408
409 \subsubsection*{\TODO6: Extendability (\RG4)} 409 \subsubsection*{\TODO6: Extendability (\RG4)}
410 \masqmail\ lacks an interface to plug in modules with additional functionality. There exists no add-on or module system. The code is only separated by function to the various source files. Some functional parts can be included or excluded by conditional compilation. But the \name{ifdef}s are scattered through all the code. This situation needs to be improved by collecting related function into single places that interact through clear interfaces with other parts. Also should these interfaces allow efficient adding of further functionality. 410 \masqmail\ lacks an interface to plug in modules with additional functionality. There exists no add-on or module system. The code is only separated by function to the various source files. Some functional parts can be included or excluded by conditional compilation. But the \name{ifdef}s are scattered through all the code. This situation needs to be improved by collecting related function into single places that interact through clear interfaces with other parts. Also should these interfaces allow efficient adding of further functionality.
411 411
423 Knowing what needs to be done is only one part, the other is deciding \emph{how} to do it by focusing on a global development strategy. 423 Knowing what needs to be done is only one part, the other is deciding \emph{how} to do it by focusing on a global development strategy.
424 424
425 425
426 \subsection{Possibilities} 426 \subsection{Possibilities}
427 427
428 Futher development of software can always go three different ways: 428 Further development of software can always go three different ways:
429 \begin{enumerate} 429 \begin{enumerate}
430 \item[S1:] Improve the current code base. 430 \item[S1:] Improve the current code base.
431 \item[S2:] Add wrappers or interposition filters. 431 \item[S2:] Add wrappers or interposition filters.
432 \item[S3:] Redesign the software from scratch and rebuild it. 432 \item[S3:] Redesign the software from scratch and rebuild it.
433 \end{enumerate} 433 \end{enumerate}
434 434
435 The first two strategies base on the available source code, and can be applied in combination. The third strategy splits from the old code base and starts over again. Wrappers and interposition filters would be outright included into a new architecture; they are a subset of a new design. Also parts of existing code can be used in a new design if appropriate. 435 The first two strategies base on the available source code, and can be applied in combination. The third strategy splits from the old code base and starts over again. Wrappers and interposition filters would be outright included into a new architecture; they are a subset of a new design. Also parts of existing code can be used in a new design if appropriate.
436 436
437 437
438 The requirements are now regarded each on its own, and are linked to the development strategy that is prefered to reach each specific requirement. If some requirement is well achievable by using different strategies then it is linked to all of them. Implementing encryption (\TODO1) and authentication (\TODO2), for example, are limited to a narrow region in the code. Such features are addable to the current code base without much problem. In contrast can quality properties like reliability (\TODO4), extendability (\TODO6), and maintainability hardly be added to code afterwards---if at all. Security (\TODO3) is addable in a new design, of course, but also with wrappers or interposition filters. 438 The requirements are now regarded each on its own, and are linked to the development strategy that is preferred to reach each specific requirement. If some requirement is well achievable by using different strategies then it is linked to all of them. Implementing encryption (\TODO1) and authentication (\TODO2), for example, are limited to a narrow region in the code. Such features are addable to the current code base without much problem. In contrast can quality properties like reliability (\TODO4), extendability (\TODO6), and maintainability hardly be added to code afterwards---if at all. Security (\TODO3) is addable in a new design, of course, but also with wrappers or interposition filters.
439 439
440 This linking of strategies to the requirements is shown in table \ref{tab:strategies}. The requirements are ordered by their focus. 440 This linking of strategies to the requirements is shown in table \ref{tab:strategies}. The requirements are ordered by their focus.
441 441
442 \begin{table} 442 \begin{table}
443 \begin{center} 443 \begin{center}
446 \caption{Development strategies and their suitability for requirements} 446 \caption{Development strategies and their suitability for requirements}
447 \label{tab:strategies} 447 \label{tab:strategies}
448 \end{table} 448 \end{table}
449 449
450 450
451 Next, the best strategy for further development needs to be discovered. Therefore a score for each strategy is obtained now by summing up the focus points of each requirement for which a strategy is prefered. Herefore only positive focus points are regarded, with each plus symbol counting one. Requirements with negative focus are not regareded because they are already or nearly reached, but the view here is on outstanding work. %(Respecting negative focus points leads to a similar result.) 451 Next, the best strategy for further development needs to be discovered. Therefore a score for each strategy is obtained now by summing up the focus points of each requirement for which a strategy is preferred. Therefore only positive focus points are regarded, with each plus symbol counting one. Requirements with negative focus are not regarded because they are already or nearly reached, but the view here is on outstanding work. %(Respecting negative focus points leads to a similar result.)
452 452
453 Strategy 1 (Improve current code) has a score of 9 points. Strategy 2 (Wrappers and interposition filters) has a score of 7 points. Strategy 3 (A new design) scores on top with 17 points. \St1 and \St2 can be used in combination; the combined score is 13 points. Thus strategy 3 ranges first, followed by the combination of strategy 1 and 2. 453 Strategy 1 (Improve current code) has a score of 9 points. Strategy 2 (Wrappers and interposition filters) has a score of 7 points. Strategy 3 (A new design) scores on top with 17 points. \St1 and \St2 can be used in combination; the combined score is 13 points. Thus strategy 3 ranges first, followed by the combination of strategy 1 and 2.
454 454
455 This leads to the conclusion, that S3 (A new design) is probably the best strategy for further development. But this result respects only the view on requirements and their relevance. Other factors like development effort and risks are important to think about too. These issues are discussed in the following sections, comparing \St3 against the combination \St1+2. 455 This leads to the conclusion, that S3 (A new design) is probably the best strategy for further development. But this result respects only the view on requirements and their relevance. Other factors like development effort and risks are important to think about too. These issues are discussed in the following sections, comparing \St3 against the combination \St1+2.
456 456
464 \subsection{Discussion} 464 \subsection{Discussion}
465 465
466 466
467 \subsubsection*{Quality improvements} 467 \subsubsection*{Quality improvements}
468 468
469 Most quality properties can hardly be added to a software afterwards. Hence, if reliability, extendability, or maintainability shall be improved, a redesign of \masqmail\ is the best way to take. The wish to improve quality inevitably point towards a modular architecture. Modularity with internal and external interfaces is highly prefered from the architectural point of view (see section \ref{sec:discussion-mta-arch}). The need for further features, especially ones that require changes in \masqmail's structure, support the decision for a new design too. Hence a rewrite is enfavored if \masqmail\ should become a modern \MTA, with good quality properties. 469 Most quality properties can hardly be added to a software afterwards. Hence, if reliability, extendability, or maintainability shall be improved, a redesign of \masqmail\ is the best way to take. The wish to improve quality inevitably point towards a modular architecture. Modularity with internal and external interfaces is highly preferred from the architectural point of view (see section \ref{sec:discussion-mta-arch}). The need for further features, especially ones that require changes in \masqmail's structure, support the decision for a new design too. Hence a rewrite is favored if \masqmail\ should become a modern \MTA, with good quality properties.
470 470
471 471
472 472
473 \subsubsection*{Security} 473 \subsubsection*{Security}
474 474
480 \hfill\cite[page 55]{graff03} 480 \hfill\cite[page 55]{graff03}
481 \end{quote} 481 \end{quote}
482 482
483 They also suggest to add wrappers and interposition filters \emph{around} applications, but more as repair techniques if it is not possible to design security \emph{into} a software the first way \cite[pages~71--72]{graff03}. 483 They also suggest to add wrappers and interposition filters \emph{around} applications, but more as repair techniques if it is not possible to design security \emph{into} a software the first way \cite[pages~71--72]{graff03}.
484 484
485 \person{Hafiz} adds: ``The major idea is that security cannot be retrofitted \emph{into} an architecture.'' \cite[page 64]{hafiz05} (emphasisis added). 485 \person{Hafiz} adds: ``The major idea is that security cannot be retrofitted \emph{into} an architecture.'' \cite[page 64]{hafiz05} (emphasis added).
486 486
487 487
488 488
489 489
490 \subsubsection*{Effort estimation} 490 \subsubsection*{Effort estimation}
502 502
503 503
504 504
505 \subsubsection*{Risks} 505 \subsubsection*{Risks}
506 506
507 The gained result might still overwights the development effort. But risks are something more to consider. 507 The gained result might still outweighs the development effort. But risks are something more to consider.
508 508
509 A redesign and rewrite of software from scratch is hard. It takes time to design a new architecture, which then must prove that it is as good as expected. As well is much time and work needed to implement the design, test it, fix bugs, and so on. If flaws in the design appear during prototype implementation, it is necessary to start again. 509 A redesign and rewrite of software from scratch is hard. It takes time to design a new architecture, which then must prove that it is as good as expected. As well is much time and work needed to implement the design, test it, fix bugs, and so on. If flaws in the design appear during prototype implementation, it is necessary to start again.
510 510
511 Such a redesign can fail at many points and it is for long unclear if the result is really better than the code that is already existent. Even if the new code is working like expected, it is still not matured. 511 Such a redesign can fail at many points and it is for long unclear if the result is really better than the code that is already existent. Even if the new code is working like expected, it is still not matured.
512 512
545 545
546 \subsubsection*{A guard against dead ends} 546 \subsubsection*{A guard against dead ends}
547 547
548 A new design does protect against such dead ends. 548 A new design does protect against such dead ends.
549 549
550 Changing requirements are one possible dead end if the software does not evolve with them. A famous example is \sendmail, which had an almost monopoly for a long time. But when security became important \sendmail\ was only repaired instead of removing the problem sources---its unsecure design. Thus security problems reappeared and over the years \sendmail's market share shrinked as more secure \MTA{}s became available. %fixme: declined ?? 550 Changing requirements are one possible dead end if the software does not evolve with them. A famous example is \sendmail, which had an almost monopoly for a long time. But when security became important \sendmail\ was only repaired instead of removing the problem sources---its insecure design. Thus security problems reappeared and over the years \sendmail's market share shrank as more secure \MTA{}s became available. %fixme: declined ??
551 \sendmail's reaction to the new requirements, in form of \name{sendmail X} and \name{MeTA1}, came much to late---the users already switched to other \MTA{}s. Redesigning a software as requirements change helps keeping it alive. % add quote: ``one thing surely remains: change'' (something like that) 551 \sendmail's reaction to the new requirements, in form of \name{sendmail X} and \name{MeTA1}, came much to late---the users already switched to other \MTA{}s. Redesigning a software as requirements change helps keeping it alive. % add quote: ``one thing surely remains: change'' (something like that)
552 552
553 Another danger is the dead end of complexity which is likely to appear by constantly working on the same code base. It is even more likely if the code base has a monolithic architecture. A good example for simplicity is \qmail\ which consists of small independent modules, each with only about one thousand lines of code. %fixme: proof 553 Another danger is the dead end of complexity which is likely to appear by constantly working on the same code base. It is even more likely if the code base has a monolithic architecture. A good example for simplicity is \qmail\ which consists of small independent modules, each with only about one thousand lines of code. %fixme: proof
554 Such simple code makes it obvious to understand what it does. The \name{suckless} project \citeweb{suckless.org} for example advertizes such a philosophy of small and simple software by following the thoughts of the \unix\ inventors \cite{kernighan84} \cite{kernighan99}. Simple, small, and clear code avoids complexity and is thus also a strong prequisite for security. 554 Such simple code makes it obvious to understand what it does. The \name{suckless} project \citeweb{suckless.org} for example advertises such a philosophy of small and simple software by following the thoughts of the \unix\ inventors \cite{kernighan84} \cite{kernighan99}. Simple, small, and clear code avoids complexity and is thus also a strong prerequisite for security.
555 555
556 556
557 557
558 558
559 559
560 \subsubsection*{Modularity} 560 \subsubsection*{Modularity}
561 561
562 The avoidence of dead ends is essential for further development on current code too. Hence it is mandatory to refactor the existing code base sooner or later. Most important is the intention to modularize it, as it improves many quality requirements, eases further development, and essentially improves securtiy. 562 The avoidance of dead ends is essential for further development on current code too. Hence it is mandatory to refactor the existing code base sooner or later. Most important is the intention to modularize it, as it improves many quality requirements, eases further development, and essentially improves security.
563 563
564 One example how modular structure makes it easy to add further functionality: \person{Sill} describes that integrating the \name{amavis} filter framework into the \qmail\ system can be done by renaming the \name{qmail-queue} module to \name{qmail-queue-real} and renaming the \name{amavis} to \name{qmail-queue} \cite[section~12.7.1]{sill02}. Nothing more in the \qmail\ system needs to be changed. This is a very admirable approach, but only possible in a modular system that consists of independent executables. 564 One example how modular structure makes it easy to add further functionality: \person{Sill} describes that integrating the \name{amavis} filter framework into the \qmail\ system can be done by renaming the \name{qmail-queue} module to \name{qmail-queue-real} and renaming the \name{amavis} to \name{qmail-queue} \cite[section~12.7.1]{sill02}. Nothing more in the \qmail\ system needs to be changed. This is a very admirable approach, but only possible in a modular system that consists of independent executables.
565 565
566 This thesis showed several times that modularity is the key property for good software design. This property can hardly be retrofitted into software. Hence development on base of current code will need a throughout restructuring too to modularize the source code. Thus a new design is similar to such a throughout refactoring, except without depending on current code. 566 This thesis showed several times that modularity is the key property for good software design. This property can hardly be retrofitted into software. Hence development on base of current code will need a throughout restructuring too to modularize the source code. Thus a new design is similar to such a throughout refactoring, except without depending on current code.
567 567
586 586
587 \subsubsection*{Break Even} 587 \subsubsection*{Break Even}
588 588
589 It is important to keep the time dimension in mind. This includes the separation into a short-time and a long-time view. The short-time view shall cover between two and four years. The long-time view is the following time. % fixme: find sources! 589 It is important to keep the time dimension in mind. This includes the separation into a short-time and a long-time view. The short-time view shall cover between two and four years. The long-time view is the following time. % fixme: find sources!
590 590
591 In the short-time view, the effort for improving the existing code is much smaller than the effort for a new design plus improvements. But to have similar quality properties at the end of the short-time frame, a \masqmail\ that is based on current code will probably require nearly as much effort as a new designed \masqmail\ will take. For all further development afterwards, the new design will scale well while the old code will require exponentiel more work. 591 In the short-time view, the effort for improving the existing code is much smaller than the effort for a new design plus improvements. But to have similar quality properties at the end of the short-time frame, a \masqmail\ that is based on current code will probably require nearly as much effort as a new designed \masqmail\ will take. For all further development afterwards, the new design will scale well while the old code will require exponential more work.
592 592
593 In the long-time view, a restructuring for modularity is necessary anyway. The question is, when to do it: Right at the start in a new design, or later in some restructuring. 593 In the long-time view, a restructuring for modularity is necessary anyway. The question is, when to do it: Right at the start in a new design, or later in some restructuring.
594 594
595 %fixme: define exactly, be clear: what does break even here mean 595 %fixme: define exactly, be clear: what does break even here mean
596 596
597 597
598 598
599 \subsubsection*{The problem with ``good enough''} 599 \subsubsection*{The problem with ``good enough''}
600 600
601 The decision for later restructuring is problematic. Functionality is often more wanted than quality, so further function is prefered over better quality, as quality is still ``good enough''. But it might be still ``good enough'' the next time, and the time after that one, and so on. 601 The decision for later restructuring is problematic. Functionality is often more wanted than quality, so further function is preferred over better quality, as quality is still ``good enough''. But it might be still ``good enough'' the next time, and the time after that one, and so on.
602 602
603 Quality improving is no popular work but it is required to avoid dead ends. As more code increases the work that needs to be done for quality and modularity improvements, it is better to do these improvements early. Afterwards all further development profits from it. 603 Quality improving is no popular work but it is required to avoid dead ends. As more code increases the work that needs to be done for quality and modularity improvements, it is better to do these improvements early. Afterwards all further development profits from it.
604 604
605 Also if some design is bad one should never hesitate to erase it and rebuild it in a sane way. 605 Also if some design is bad one should never hesitate to erase it and rebuild it in a sane way.
606 606
616 616
617 Free Software ``sells'' if it has a good user base. Although \qmail\ is somehow outdated and its author has released no new version since about 10 years, \qmail\ still has a very strong user base and community. 617 Free Software ``sells'' if it has a good user base. Although \qmail\ is somehow outdated and its author has released no new version since about 10 years, \qmail\ still has a very strong user base and community.
618 618
619 Good concepts, sound design, and a sane philosophy gives users good feelings for the software and faith in it. They become interested in using it and to contribute. In contrast does constantly repairing and reappearing weaknesses leave a bad feeling. 619 Good concepts, sound design, and a sane philosophy gives users good feelings for the software and faith in it. They become interested in using it and to contribute. In contrast does constantly repairing and reappearing weaknesses leave a bad feeling.
620 620
621 The motivation most volunteer developers have is their wish of doing good work to create software of value. Projects that follow admireable plans towards a good product will motivate volunteers to help with it. More helpers can get the 2,5 man-years for a new design in less absolute time done. Additionally is a good developers base the best start for a good user base, and users define a software's value. 621 The motivation most volunteer developers have is their wish of doing good work to create software of value. Projects that follow admire able plans towards a good product will motivate volunteers to help with it. More helpers can get the 2,5 man-years for a new design in less absolute time done. Additionally is a good developers base the best start for a good user base, and users define a software's value.
622 622
623 623
624 624
625 625
626 626
627 627
628 628
629 629
630 \section{Result} 630 \section{Result}
631 631
632 This chapter identified the requirements and the outstanding work to achieve them. Their importance and the required work on them lead to a focus ranking amoung the requirements, which resulted in a list of tasks to do. Afterwards possible development strategies to control the work process were compared and discussed. 632 This chapter identified the requirements and the outstanding work to achieve them. Their importance and the required work on them lead to a focus ranking among the requirements, which resulted in a list of tasks to do. Afterwards possible development strategies to control the work process were compared and discussed.
633 633
634 Strategy 3 (A new design) is slightly prefered over the combination of strategy 1 (Improve existing code) and 2 (Add wrappers and interposition filters) in regard of the requirements. 634 Strategy 3 (A new design) is slightly preferred over the combination of strategy 1 (Improve existing code) and 2 (Add wrappers and interposition filters) in regard of the requirements.
635 635
636 The discussion afterwards did generally support the new design strategy. But some arguments stand against it. These are: 636 The discussion afterwards did generally support the new design strategy. But some arguments stand against it. These are:
637 637
638 \begin{enumerate} 638 \begin{enumerate}
639 \item The development time and effort 639 \item The development time and effort
641 \item The risks for failure 641 \item The risks for failure
642 \end{enumerate} 642 \end{enumerate}
643 643
644 The first two arguments are only relevant for the short-time view, because both will become \emph{support arguments} for the new design, once the Break Even point is reached. 644 The first two arguments are only relevant for the short-time view, because both will become \emph{support arguments} for the new design, once the Break Even point is reached.
645 645
646 The third argument, the risks, remain. There are risk in every investion. Taking no risks means remaining the same, means drifting towards a dead end in a world that does change. 646 The third argument, the risks, remain. There are risk in every investment. Taking no risks means remaining the same, means drifting towards a dead end in a world that does change.
647 647
648 648
649 With respect to the current situation, the suggested further development plan for \masqmail\ is splitted into a short-time plan and a long-time plan: 649 With respect to the current situation, the suggested further development plan for \masqmail\ is split into a short-time plan and a long-time plan:
650 650
651 \begin{enumerate} 651 \begin{enumerate}
652 \item The short-time plan: Add the most needed features, being encryption, authentication, and security wrappers, to the current code base. 652 \item The short-time plan: Add the most needed features, being encryption, authentication, and security wrappers, to the current code base.
653 \item The long-time plan: Design a new architecture that satisfies the modern requirements especially the quality requirements. 653 \item The long-time plan: Design a new architecture that satisfies the modern requirements especially the quality requirements.
654 \end{enumerate} 654 \end{enumerate}
655 655
656 The background thought is to first do the most needed stuff on the existing code to keep %fixme: erhalten 656 The background thought is to first do the most needed stuff on the existing code to keep %fixme: erhalten
657 it usable. This satisfies the urgent needs and removes the time pressure from the development of the new design. After this is done, a new designed \masqmail\ should be developed from scratch. This is the work for the future. It shall, after it is usable and throughout tested, supersede the old \masqmail. 657 it usable. This satisfies the urgent needs and removes the time pressure from the development of the new design. After this is done, a new designed \masqmail\ should be developed from scratch. This is the work for the future. It shall, after it is usable and throughout tested, supersede the old \masqmail.
658 658
659 The basic idea is, regularly developing a new design from scratch while the current version is still in use and gets repaired. Hence a modern design will inherit an old one in regular intervals. This is a very future-proove concept that combines the best of both worlds. The price to pay is only the increased work which gets covered %fixme: uebernommen 659 The basic idea is, regularly developing a new design from scratch while the current version is still in use and gets repaired. Hence a modern design will inherit an old one in regular intervals. This is a very future-proof concept that combines the best of both worlds. The price to pay is only the increased work which gets covered %fixme: uebernommen
660 by volunteers that \emph{want} to do it. 660 by volunteers that \emph{want} to do it.
661 661
662 662
663 663
664 %fixme: move that sentence to the beginning of the next chapter? 664 %fixme: move that sentence to the beginning of the next chapter?