comparison thesis/tex/2-MarketAnalysis.tex @ 400:5254a119ad56

fixed all major trashing of the right margin
author meillo@marmaro.de
date Sat, 07 Feb 2009 23:47:34 +0100
parents 13e630c5a44d
children e57129f57faa
comparison
equal deleted inserted replaced
399:a641bea7a087 400:5254a119ad56
95 Integration of communication technologies becomes popular. This goes beyond consolidation, because communication technologies of different kinds are bundled together to make communication more convenient for human beings. User interfaces tend to go the same direction. The underlying technologies are going to get grouped. But it seems as if synchronous and asynchronous communication can not be joined together in a sane way, thus they will probably only merge at the surface. 95 Integration of communication technologies becomes popular. This goes beyond consolidation, because communication technologies of different kinds are bundled together to make communication more convenient for human beings. User interfaces tend to go the same direction. The underlying technologies are going to get grouped. But it seems as if synchronous and asynchronous communication can not be joined together in a sane way, thus they will probably only merge at the surface.
96 96
97 97
98 \subsubsection*{Communication hardware} 98 \subsubsection*{Communication hardware}
99 99
100 Communication hardware comes from two different roots: On one side, the telephone, now available as mobile phones. This group centers around recorded data and dialog but messages are also supported by the answering machine and \NAME{SMS}. On the other side, mail and its relatives like email, which use computers as main hardware. This part centers around document messages but also supports dialog communication in Instant Messaging and Voice over \NAME{IP}. 100 Communication hardware comes from two different roots: On one side, the telephone, now available as mobile phones. This group centers around re\-cor\-ded data and dialog but messages are also supported by the answering machine and \NAME{SMS}. On the other side, mail and its relatives like email, which use computers as main hardware. This part centers around document messages but also supports dialog communication in Instant Messaging and Voice over \NAME{IP}.
101 101
102 The last years finally brought the two groups together, with \name{smart phones} being the merging hardware element. Smart phones are computers in the size of mobile phones or mobile phones with the capabilities of computers, however one likes to see it. They provide both functions by being telephones \emph{and} computers. 102 The last years finally brought the two groups together, with \name{smart phones} being the merging hardware element. Smart phones are computers in the size of mobile phones or mobile phones with the capabilities of computers, however one likes to see it. They provide both functions by being telephones \emph{and} computers.
103 \index{smart phone} 103 \index{smart phone}
104 104
105 Smart phones match well the requirements of recorded data for which they were designed. Text is difficult to write with their minimal keyboards, but speech to text converters may provide help in future. This leads to a need for ordinary computers for the field of exchanging text documents and as better input hardware for all written information. 105 Smart phones match well the requirements of recorded data for which they were designed. Text is difficult to write with their minimal keyboards, but speech to text converters may provide help in future. This leads to a need for ordinary computers for the field of exchanging text documents and as better input hardware for all written information.
163 \begin{quote} 163 \begin{quote}
164 Since \emph{receivers} pay the bulk of the costs for spam (including most obviously their time to delete all that incoming spam), spam use will continue to rise until effective technical and legal countermeasures are deployed, \emph{or} until people can no longer use email. 164 Since \emph{receivers} pay the bulk of the costs for spam (including most obviously their time to delete all that incoming spam), spam use will continue to rise until effective technical and legal countermeasures are deployed, \emph{or} until people can no longer use email.
165 \hfill\cite{wheeler03} 165 \hfill\cite{wheeler03}
166 \end{quote} 166 \end{quote}
167 167
168 The amount of spam is huge. Panda Security and Commtouch state in their \name{Email Threats Trend Report} for the second Quarter of 2008: ``Spam levels throughout the second quarter averaged 77\,\%, ranging from a low of 64\,\% to a peak of 94\,\% of all email [...]'' \cite[page 4]{panda:email-threats}. The report sees the main source of spam in bot nets consisting of zombie computers: ``Spam and malware levels remain high for yet another quarter, powered by the brawny yet agile networks of zombie \NAME{IP}s.'' \cite[page 1]{panda:email-threats}. This is supported by IronPort Systems: ``More than 80 percent of spam now comes from a `zombie'---an infected \NAME{PC}, typically in a consumer broadband network, that has been hijacked by spammers.'' \cite{ironport:zombie-computers}. Positive for \MTA{}s is that they are not the main source for spam, but it is only a small delight. Spam is a general weakness of the email system because it is not stoppable. 168 The amount of spam is huge. Panda Security and Commtouch write in their \name{Email Threats Trend Report} for the second Quarter of 2008: ``Spam levels throughout the second quarter averaged 77\,\%, ranging from a low of 64\,\% to a peak of 94\,\% of all email [...]'' \cite[page 4]{panda:email-threats}. The report sees the main source of spam in bot nets consisting of zombie computers: ``Spam and malware levels remain high for yet another quarter, powered by the brawny yet agile networks of zombie \NAME{IP}s.'' \cite[page 1]{panda:email-threats}. This is supported by IronPort Systems: ``More than 80 percent of spam now comes from a `zombie'---an infected \NAME{PC}, typically in a consumer broadband network, that has been hijacked by spammers.'' \cite{ironport:zombie-computers}. Positive for \MTA{}s is that they are not the main source for spam, but it is only a small delight. Spam is a general weakness of the email system because it is not stoppable.
169 \index{spam!sources of} 169 \index{spam!sources of}
170 170
171 171
172 172
173 173
263 As main change, the sender has the responsibility for mail storage; only a notification about a mail message gets sent to the recipient. The recipient can then fetch the message then from the sender's server. This is in contrast to the \SMTP\ mail architecture where mail and the responsibility for it is transferred from the sender to the receiver. (See page~\pageref{smtp-intro} for the \name{store-and-forward} principle.) 263 As main change, the sender has the responsibility for mail storage; only a notification about a mail message gets sent to the recipient. The recipient can then fetch the message then from the sender's server. This is in contrast to the \SMTP\ mail architecture where mail and the responsibility for it is transferred from the sender to the receiver. (See page~\pageref{smtp-intro} for the \name{store-and-forward} principle.)
264 \index{smtp!store-and-forward} 264 \index{smtp!store-and-forward}
265 265
266 \MTA{}s are still important in this new email architecture, but in a slightly different way. They do not transfer mail itself anymore, but they transport the notifications about new mail to the destinations. This is a quite similar job as in the \NAME{SMTP} model. The real transfer of the mail, however, can be done in an arbitrary way, for example via \NAME{FTP} or \NAME{SCP}. 266 \MTA{}s are still important in this new email architecture, but in a slightly different way. They do not transfer mail itself anymore, but they transport the notifications about new mail to the destinations. This is a quite similar job as in the \NAME{SMTP} model. The real transfer of the mail, however, can be done in an arbitrary way, for example via \NAME{FTP} or \NAME{SCP}.
267 267
268 A second concept, this one primary to arm against spam, is \person{David~A.\ Wheeler}'s \name{Guarded Email} \cite{wheeler03}. It requires messages to be recognized as Ham (non-spam) to be accepted, otherwise a challenge-response authentication will be initiated. 268 A second concept, this one primary to arm against spam, is \person{David~A.\ Whee\-ler}'s \name{Guarded Email} \cite{wheeler03}. It requires messages to be recognized as Ham (non-spam) to be accepted, otherwise a challenge-response authentication will be initiated.
269 \index{Guarded Email} 269 \index{Guarded Email}
270 270
271 \name{Hashcash} by \person{Adam Back}---a third concept---tries to limit spam and denial of service attacks \cite{back02}. It requests payment for email. The costs are computing time for the generation of hash values. Thus sending spam becomes expensive. Further information about \name{Hashcash} can be found on \citeweb{hashcash:homepage}. 271 \name{Hashcash} by \person{Adam Back}---a third concept---tries to limit spam and denial of service attacks \cite{back02}. It requests payment for email. The costs are computing time for the generation of hash values. Thus sending spam becomes expensive. Further information about \name{Hashcash} can be found on \citeweb{hashcash:homepage}.
272 \index{Hashcash} 272 \index{Hashcash}
273 273